GEOTECHNICAL TESTING REPORTS

	N	Scale:	As Shown	Notes:	Client:	CH2M HILL	
211 in land in the		Prepared:	AJR		Site:	HOWELL MILL SEWER OUTFALL	FIC 1
We re here for you		Checked:	RIO				FIG. I
UNITED CONSULTING		Project No .:	2016.5764.01		Title:	Borings Location Plan	

EXPLORATION PROCEDURES

Eight (8) SPT borings (designated HM-1 to HM-8) and two auger borings (HM-9 and HM-10) were performed at the approximate locations indicated on the attached Boring Location Plan (Figure 1). The SPT borings were performed in general accordance with ASTM D 1586. Soil samples obtained during testing were visually evaluated by the Project Engineer and classified according to the visual-manual procedure described in ASTM D 2488. A narrative of field operations is included in The Appendix.

The test locations were determined by our field engineer using a master plan provided by client and a Trimble GeoXH, rated as a sub-foot unit (horizontal accuracy) GPS Unit with a +/- 3 ft accuracy. These locations are shown on the attached Boring Location Plan (Figure 1) and should be considered approximate. The elevations shown on the test logs were obtained also using the GeoXH GPS Unit but should be considered very approximate. The provided elevation should not be relied upon during the design.

Boring and Rock Core Logs

GENERAL NOTES

The soil classifications noted on the Boring Logs are visual classifications unless otherwise noted. Minor constituents of a soil sample are termed as follows:

Trace	0 - 10%
Some	11 - 35%
Suffix "y" or "ey"	36 - 49%

LEGEND

Split Spoon Sample obtained during Standard Penetration Testing

Relatively Undisturbed Shelby Tube Sample

Groundwater Level at Time of Boring Completion

Groundwater Level at 24 hours (or as noted) after Termination of Boring

- w Natural Moisture Content
- LL Liquid Limit
- PL Plastic Limit Atterberg Limits
- PI Plasticity Index
- PF Percent Fines (Percent Passing #200 Sieve)
- ð d Dry Unit Weight (Pounds per Cubic Foot or PCF
- 8 m Moist or In-Situ Unit Weight (PCF)
- X sat Saturated Unit Weight (PCF)

BORING LOG DATA AND NARRATIVE OF DRILLING OPERATIONS

The test borings were made by mechanically advancing helical hollow stem augers into the ground. Samples were covered at regular intervals in each of the borings following established procedures for performing the Standard Penetration Test in accordance with ASTM Specification D-1586. Soil samples were obtained with a standard 1.4" I.D. x 2.0" O.D. split barrel sampler. The sampler is first seated 6" to penetrate any loose cuttings and then driven an additional foot with the blows of a 140 pound hammer freely falling a distance of 30". The number of blows required to drive the sampler each six inches is recorded on the Boring Logs. The total number of blows required to drive the sampler the final foot is designated the "standard penetration resistance." This driving resistance, known as the "N" value, is a measure of the relative density of granular soils and is an indication of the consistency of cohesive deposits.

The Following table describes soil consistencies and relative densities based on standard-penetration resistance values (N) determined by the Standard Penetration Test.

	"N"	Consistency
Clay and Silt	0-2 3-4 5-8 9-15 16-30 Over 31	Very Soft Soft Firm Stiff Very Stiff Hard
	"N"	Relative Density
Sand	0-4 5-10 11-19 20-29 30-49 50+	Very Loose Loose Firm Medium Dense Dense Very Dense

CLIENT:	12M	HILL				SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW					
PROJECT	NAME	 ≣: I Mill 9	Sewer Outfall			WATER LEVEL - IMMEDIATE: Not Encountered					
PROJECT		BER:	1					n Augoro	BORING DEPTH:		
LOGGED	BY:		1 a'a			DATE DRILLED:	ow Sten	II Augers	CORING DEPTH:		
Drilling	Con	npany/	Drill Rig			3/6/2016 X COORDINATE/LA	T (ft):		N/A Y COORDINATE/LONG (ft):		
Ki	Imar	n Bros				1228922	4.07		2424729.43		
MO	VEL	υ				SPT	-1	1			
DEPTH BEI (Ft)	WATER LE	LITHOLOGI SYMBOL	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ELEVATION (Ft)	RECOVERY (in. or %)	Blows/6"	N-VALUE (bpf)	N-value (bpf) မ က င္ က ၃	NOTES		
0			Silt-sandy, trace clay stiff; tan-red (Residual)(ML)	- 819 -							
-				- 818	20	- 6-7-8-8 -	15				
-	-			- 817 -		{}	-				
-	-			816	18	- 3-4-6-7 -	10				
-	-		-firm; tan	815		{}		. /	Plastic Limit=Non Plastic; Liquid Limit = No Value; Plasticity		
5 —				814	18	- 2-2-3-3 -	5		Index=Non Plastic		
-			-some clav: soft: tan-red	- 813 -							
_			-some day, son, tan-red		18	- 2-2-2-2 -	4				
_				- 811 -]					
			-firm		40						
10				- 810	10	- 2-3-3-3 -					
10 -				- 809 - -							
-					20	- 3-3-3-3 -	6				
-	1		-trace rock fragments; stiff			{}					
-	1			- 806	12	- 4-5-6-6 -	11				
-	-		-firm	- 805 -		{ —— }					
15 —				804	16	- 3-4-3-5 -	7				
-	-	(영화)	Sand-some silt_trace clay and			{}					
-	-		mica; loose; red-brown (SM)	802	14	- 4-4-4-4 -	8				
-	-			801 -		<u> </u>			Slightly damp soil		
-			-trace rock fragments	800	16	- 2-3-3-3 -	6				
				-					No groundwater encountered at time of		
20 —	1	s kon (al)	BORING TERMINATED AT 20 FEET	799	-16	۲ (6	F222222020200	drilling		
Note	s:	l	1	/98	SPT = BGS =	Standard Penetration	II n Testing ice	Ш	1		
					TOD = H:/Stra	Time of Drilling ater Boring Logs/	·				

	12M	ншт				SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW				
PROJECT	NAM	E:	Sower Outfall			WATER LEVEL - IMMEDIATE:				
PROJECT	NUM	BER:	Sewer Outian			DRILLING METHOD	/TYPE:	J	BORING DEPTH:	
20 LOGGED	16.5 BY:	5901.0	01			SPT Holl DATE DRILLED:	ow Ster	n Augers	16 Feet CORING DEPTH:	
Ar	dre	w Ra	ysin			9/2/2016	T (#)-			
Drilling Ki	Ima	npany n Bro	//Drill Rig is Inc / CME 550			1228911	2.47		2424529.55	
≥	<u>ب</u>		LITHOLOGY			SPT				
ELO	EVE	000	1	_				N-value (bpf)		
EPTH BI (Ft)	ATER L	THOLO	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	EVATION (Ft)	COVERY in. or %)	Blows/6"	N-VALUE (bpf)	0 25 75 75	NOTES	
	5		Clay come cilt and conductiff	839	₩,	n (
0			red (Fill)(CL)	-				A		
-	-		Silt-sandy, trace clay and mica		24	- 3-9-10-10 -	19			
			very stiff; tan-brown	-						
-	-		(Residual)(ML)	- 837		K		-		
				-						
-	1		-trace rock fragments	- 836	20	- 6-7-10-17 -	17			
				-						
-	1			835 		K }		-		
F				-	22	0 10 10 12	20			
5 —]			- 034	22	- 9-10-10-13 -	20			
_						V				
			stiff	-						
_	-			- 832	20	- 4-4-6-7 -	10			
				-						
-	-	1000	Sand-some silt trace clay and			K >		-	Plastic Limit = Non Plastic; Liquid Limit = No Value; Plasticity Index = Non Plastic	
			rock fragments; medium dense;	-						
-	-		brown-tan (SM)	- 830	24	- 8-11-12-15 -	23			
				-						
10 —	1		firm	- 829		K		-		
				-						
-	1			- 828	24	- 5-7-7-8 -	14			
_										
_					7	- 12-15-50/3 -	100			
			Partially weathered rock sampled as sand-some rock fragments.	-						
	-		trace silt, clay and mica; grey					-		
			fragments: medium dense: grev	-				a state of the second		
15 —	-		(SŴ)	824	24	-18-15-13-11-	28			
				-						
-	-	000000000000000000000000000000000000000	AUGER REFUSAL AT 16 FEET			۲۲	-28		No groundwater encountered at time of drilling	
				-						
Note	ـــــ ۲۰	1	1	822	SPT =	Standard Penetration	Testing	11	1	
					BGS = TOD =	Below Ground Surface	ce			
					H:/Str	ater Boring Logs/				

	12M					SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW				
PROJECT	NAM					WATER LEVEL Fins surface and the second seco				
HC PROJECT	NUM	BER:	Sewer Outfall			Not Enco DRILLING METHOD	/TYPE:	d	BORING DEPTH:	
20	16.5	5764.0	01			SPT Holl	ow Ster	n Augers		
An	dre	w Ra	ysin			9/2/2016			N/A	
Drilling Ki l	Con mai	npany n Bro	//Drill Rig s Inc / CME 550			X COORDINATE/LA 1228906	⊤ (ft): 8.67		Y COORDINATE/LONG (ft): 2424400.73	
2			LITHOLOGY			SPT				
ELO	EVE	00								
DEPTH BI (Ft)	WATER L	LITHOLOC	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ELEVATION (Ft)	RECOVERY (in. or %)	Blows/6"	N-VALUE (bpf)		NOTES	
0			Silt-sandy, trace clay; very stiff; brown-tan (Residual)(ML)	828	20	- 4-7-9-15 -	16			
-	-				18	- 8-13-16-18 -	29			
5 —	-				20	-12-12-10-10-	22			
-	-		-stiff	- - 	24	- 9-11-12-15 -	23	-		
- 10 —	-				20	- 5-6-7-7 -	13	-		
-			very stiff		24	- 3-4-10-12 -	14			
-					24	-10-13-15-18-	28	_		
15 — _					20	- 8-11-14-17 -	25	-		
-			-stiff		24	- 4-5-5-7 -	10	-	Plastic Limit = Non Plastic; Liquid Limit = No Value; Plasticity Index	
_ 20 —	-		-very stiff; white-tan		24	- 6-9-9-10 - 	18	-	= Non Plastic	
-	-		-tan-brown		24	- 7-8-8-9 - 	16	-		
-			Clav-silty, some sand: very stiff:		24	- 6-9-11-17 - 	20	-		
25 — _	-		light tan (CL)		24	- 9-11-11-15 -	22			
-	-			800	24	-10-15-19-22-	34	-		
- 30 —	-		BORING TERMINATED AT 30	798	24 	-13-16-19-25-	30 	-	No groundwater encountered at time of drilling	
-	-		FEET	-					g	
Notes	Notes : SPT = Standard Penetration Testing BGS = Below Ground Surface TOD = Time of Drilling H:/Strater Boring Logs/									

	12M	ши і						Poschtrog Battl	
PROJECT	NAM	E:	Sauran Quiffall			WATER LEVEL - IM	IMEDIATE:		
PROJECT	NUM	BER:				25 Feel DRILLING METHOD	D/TYPE:		BORING DEPTH:
20 LOGGED I	16.5 3Y:	5764.0	1			SPT Holl DATE DRILLED:	low Ster	n Augers	30 Feet CORING DEPTH:
An	dre	w Ra	ysin /Drill Dia			9/2/2016	AT (ft):		
Ki	ma	n Bro	s Inc / CME 550	1		1228904	13.87		2424195.54
ş			LITHOLOGY	-		SPT			
()	LEVE	D GC		z				N-value (bpf)	
TH E	TER	ANB VMB	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ATIC (Ft)	OVER' or %)	Blows/6"	(bpf)	20 J	NOTES
DEF	MA	ļΞ ω		ELEY	RECO (in.		Ż		NOTED
0			Clay-some sand and silt; stiff;	_ 820					
-	1		Silt-some clay and sand, trace	-	24	- 3-5-7-7 -	12		
_			rock fragments; stiff; tan-orange	- 818 -				-	
_	1		(Residual)(ML)	-	24	4-5-6-7	11		
5				- 010	24	6790	15		
5-				814	24				
_				-	24	5-5-6-7	11		
_				812		[]			
_			-firm	-	20	- 4-4-4-5 -	8	/	
10 -				- 		{}	, 	-	
_			-stiff	-	24	- 4-5-5-5 -	10		
_						{}			
_				-	24	- 5-6-6-6 -	12		Damp soil
_						kγ			
15 —	-		-very stiff	-	24	- 6-7-9-11 -	16		
	-			804		K			
-	-			-	24	- 6-8-8-7 -	16	/	
	-			802		K }		-	
				-	24	- 4-4-8-9 -	12		
20 —	1		-sandy, trace clay; very stiff; white-tan	800		K }	×	-	
-	1			-	20	- 5-7-10-12 -	17		
-	1		-tan-brown	— 798 -		K }	×		
-	1			-	22	- 6-10-16-18 -	26		Plastic Limit = 25% [.] Liquid Limit = 40% [.]
-			Clay-silty, some sand; very stiff;	- 796 -		Ҟ ────		-	Plasticity Index = 15%
25 —	\bigtriangledown		light tan (CL)	Ę	24	-12-10-10-12-	20		Groundwater encountered at 25 feet
-	1		-hard	— 794 		K }	>		
-	1			-	20	- 8-8-10-11 -	18		
-]			- 792 - -	24	601117	20		
30]			- 700	24		20		
30			BORING TERMINATED AT 30	- 190	24	<u> </u>	20		
				788					
Notes	s :				SPT = BGS =	Standard Penetration Below Ground Surfa	n Testing ace		
					TOD = H:/Str	ater Boring Logs/			

	1014					SITE LOCATION:		Deschtree Battle			
PROJECT	NAM					WATER LEVEL - IMMEDIATE:					
HC PROJECT	wel	I Mill BER:	Sewer Outfall			25 Feet DRILLING METHOD	/TYPE:		BORING DEPTH:		
20	16.5	5764.0	01			SPT Holl	ow Sterr	n Augers	35 Feet		
LOGGED	BY: Idre	w Ra	ysin			DATE DRILLED: 9/1/2016			CORING DEPTH: N/A		
Kilman Ki	Bros Ima	s Inc. n Bro	CME 550 s Inc / CME 550			X COORDINATE/LA 1228901	⊤ (ft): 0.25		Y COORDINATE/LONG (ft): 2423975.13		
>			LITHOLOGY			SPT					
TOV	NEI	ы С				0		N value (bof)			
DEPTH BE (Ft)	WATER LE	DOTUTION SYMBOI	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ELEVATION (Ft)	RECOVERY (in. or %)	Blows/6"	N-VALUE (bpf)	22 22 2 24 20 22 2	NOTES		
0	-		Silt-sandy, trace clay; stiff; white-tan (Residual)(ML)	_ 818 _ _ _	24	- 4-5-6-7 -	11				
_					18	- 4-5-7-8 -	12				
5 —			-firm; tan		20	- 3-4-4-6 -	8				
_				- 812	20	- 3-3-4-5 -	7				
-			-stiff		22	- 3-5-5-6 -	10				
10 —			-firm	808 - - - -	24	- 2-2-3-4 -	5				
-				- 806 - - -	22	- 3-4-4-5 -	8				
- 15 —	-			804 	24	<	8		Damp soil		
-					24	- 3-4-4-4 -	8		Plastic index = 28%, Liquid Limit = 35, Plasticity Index = 7%		
-	-		-stiff	800 	16	- 10-7-8-7 -	15				
20 —	-		-firm; light tan	798 - - -	24	- 3-4-4-4 -	8				
-			-stiff	796 - - - -	24	< > - 4-5-10-12 -	15				
- 25 —			-very stiff		20	6-6-10-11 -	16		Groundwater encountered at 25 feet		
-		2907. 1997	 Partially weathered rock sampled as sand-trace silt and clay: very 	- 792 	5	- 4-100 -	100 100				
-			dense; white-brown AUGER REFUSAL AT 27 FEET	790 							
30				788	0.77	Standard Develop"	Testic				
Note	s :				BGS = TOD = H:/Stra	Below Ground Surface Time of Drilling ater Boring Logs/	ce				

CLIENT:	2M	нит				SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW				
PROJECT						WATER LEVEL - IMM	MEDIATE:			
PROJECT		BER:				DRILLING METHOD	/TYPE:		BORING DEPTH:	
20 LOGGED E	16.5 BY:	764.01				SPT Holle DATE DRILLED:	ow Sten	n Augers	30 Feet CORING DEPTH:	
An	dre	w Ray	sin			8/31/16	T (ft):			
Drilling Kil	mar	n Bros	Inc / CME 550			1228907	6.66		2423790.55	
N			LITHOLOGY	_		SPT				
() BELC	LEVE	D GIC		z				N-value (bpf)		
DEPTH E (F	WATER	LITHOLO SYMB	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ELEVATIO (Ft)	RECOVER (in. or %)	Blows/6"	N-VALUE (bpf)	75 75	NOTES	
0			Silt-some sand, clay and gravel; stiff; tan-orange (Fill)(ML)	- 805 - - - 804 -	20	- 3-5-6-8 -	11			
-				803		K }				
-			Silt-sandy, trace clay; stiff; tan (Residual)(ML)		24	- 7-7-8-8 -	15			
5 —				- 801 - 800 - 800	24	< > _ 7-11-11-12 _	22			
-			-very stiff	- - - 799 -		{}				
-			Partially weathered rock as sand-trace silt, clay and rock		18	- 20-27-100 -	100			
_			Silt-sandy, trace clay; stiff; white (ML)	796	16	- 10-5-5-6 -	10			
10 —				795		{}	100			
_			Partially weathered rock as sand-some rock fragments, trace silt and clay; white-brown	794	14	<pre>- 5-5-100 - </pre>	100	-		
_			-grey	- 	14	- 5-6-6-100 -	100		Plastic Limit = Non Plastic; Liquid Limit	
- 15 —				791 790	5	- 100	100		= No Value; Plasticity Index = Non Plastic	
_			Sand-some silt and gravel, trace	- 		{	-			
-			ciay, iirm, tan (Sivi)	- 788	24	- 3-8-10-10 -	18		Stabilized groundwater encountered at 17 feet	
-			Partially weathered rock as	- 786	15	- 9-15-100 -	100			
20 —		<u>I</u> D	fragments, trace clay; very dense; grey-brown	- 785](100			
Notes	3:	I		/84	SPT = BGS = TOD = H:/Str	II Standard Penetration Below Ground Surfac Time of Drilling ater Boring Logs/	Testing	И	1	

	12M	HILL				SITE LOCATION: Howell M	lill Rd &	Peachtree Battle	e Avenue NW	
PROJECT	NAME		Sewer Outfall			WATER LEVEL - IMMEDIATE:				
PROJECT	NUME	BER:				DRILLING METHOD	/TYPE:		BORING DEPTH:	
20 LOGGED E	16.5 BY:	764.0	1			SPT Holl DATE DRILLED:	ow Ster	n Augers	20 Feet CORING DEPTH:	
An	dre	w Ray	sin			9/1/2016	T (ft):			
Drilling Kil	mar	n Bros	s Inc / CME 550			1228919	2.94		2423554.82	
≥			LITHOLOGY	_		SPT				
DEPTH BELO (Ft)	WATER LEVE	LITHOLOGIC SYMBOL	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	ELEVATION (Ft)	RECOVERY (in. or %)	Blows/6"	N-VALUE (bpf)	N-value (bpf)	NOTES	
0	-		Silt-sandy, trace clay; firm; white (Residual)(ML)	784 	19	- 3-3-4-6 -	7			
_	-		-tan	- 782 - -	18	- 3-3-3-3	6	-		
_	-		-trace root fragments; tan-brown	- - 780 -		{		-		
5 —	-		-no roots: arev	- - - - 778	16	- 3-3-3 -	6	-		
_				- - - 776	20	- 3-3-4-4 -	7			
_	-		-stiff	-	14	- 5-5-6-7 -	11		Stabilized groundwater measured at 10	
10 —			-trace rock fragments; very stiff	— 774 - - -	18	- 7-8-9-6 -	17		feet	
-	-		-no rocks; firm; green-white	- - 772 -	24	- 2-2-3-3 -	5	-	Plastic Limit=35%; Liquid Limit =43%; Plasticity Index=8%	
-	-		-tan-yellow	- 770 - -	24	- 2-3-5-5 -	8		Damp soil	
-	-		Sand-some silt and rock	- - 768 -		{		-		
	-		(SM)	- - - - 766	24	- 2-4-5-6 -	9	-	Groundwater encountered at 18 feet at time of drilling Saturated soil	
-	-				24	- 3-4-4-10 -	8			
			BORING TERMINATED AT 20 FEET							
Notes : 762 Notes : SPT = Standard Penet BGS = Below Ground TOD = Time of Drilling H:/Strater Boring Log									1	

CLIENT:	12M	HILL				SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW				
PROJECT	NAM		Sower Outfall			WATER LEVEL - IM	MEDIATE:	4		
PROJECT	NUM	BER:				DRILLING METHOD	/TYPE:	,	BORING DEPTH:	
20 LOGGED	16.5 BY:	5764.0	1			SPT Holl DATE DRILLED:	ow Ster	n Augers	15 Feet CORING DEPTH:	
Ar	ndre	w Ray	sin			8/31/2016	6		N/A	
Drilling Ki	Con Ima	npany/ n Bros	Drill Rig 5 Inc / CME 550			X COORDINATE/LA 1228891	⊤ (ft): 9.65		Y COORDINATE/LONG (ft): 2423420.62	
>	LITHOLOGY					SPT				
ILOV		ы С П								
ET BE	RLE	1BO 1BO	GEOLOGIC DESCRIPTION OF	NOL	%) %)		₽C	N-value (bpf)		
LLLL	ATE	SYN	SOIL AND ROCK STRATA	EVA.	COV	Blows/6"	A-V Ad)	10 10	NOTES	
ä	3				Щ.	1				
0			Asphalt/GAB	_ //9	12		o		0 to 1 feet considered existing groundcover	
_										
			Silt-clayey, some sand; firm; tan-red (Fill)(ML)	-						
_				- 777	20	- 3-4-4-6 -	8			
				-						
_				- 776		<u> </u>		-		
			firm: tan-white-red (Residual)(ML)	-						
_	_		,	- 	24	- 3-3-4-6 -	7		Plastic Limit = 32%; Liquid Limit=47%;	
				-					Plasticity index=15%	
5 —	-		trace clay: tan orange	- 774		₭		-		
			-trace clay, tan-orange	-						
_	-			- 	20	- 3-3-4-5 -	7			
				-						
_	-			- 						
			-orange-brown	-						
_	-			- 	24	- 3-4-4-5 -	8			
				-						
-	-			- 770		₭		-		
			-stiff; white-red	-						
10 —	-			- 769	24	- 3-5-7-7 -	12			
				-						
-	-		firm: grey-brown	- 768		╉────≻		-	Damp soil	
				-						
-	-			- 767	24	- 3-3-4-4 -	7			
				-						
-	-		-stiff	766		╉────≻				
				-						
-	-			765	24	- 4-7-7-8 -	14			
				-						
15 —	-		BORING TERMINATED AT 15			₽\	14		No groundwater encountered at time of drilling	
			FEET	-						
	-			763						
				-						
Note			1	762	SDT -	Standard Penetration	Testing			
INOTE	5:				BGS = TOD =	= Below Ground Surface = Time of Drilling	ce			
					H:/Str	rater Boring Logs/				

	12M					SITE LOCATION: Howell Mill Rd & Peachtree Battle Avenue NW					
PROJECT	NAM	E:				WATER LEVEL - IMMEDIATE:					
HC PROJECT	NUM	BER:	Sewer Outfall			Not Enco DRILLING METHOD/	UNTERE	2	BORING DEPTH:		
20	16.5	5764.0 ⁻	1			SPT Hollo	ow Ster	n Augers			
An	dre	w Ray	sin			9/6/2016			N/A		
Drilling Ki l	Con Ima	npany/ n Bros	Drill Rig Inc / CME 550			X COORDINATE/LAT 12289104	(ft): 4.53		Y COORDINATE/LONG (ft): 2424510.57		
>			LITHOLOGY			SPT					
TH BELOV (Ft)	TER LEVE	HOLOGIC YMBOL	GEOLOGIC DESCRIPTION OF SOIL AND ROCK STRATA	(Ft))VERY or %)	Blows/6"	VALUE (bpf)	N-value (bpf)	- NOTES		
DEP	WA.	Ę		ELE	RECO (in.		Ż				
0 -			Sand-silty (Residual)	-					Straight auger boring		
_				- 824 -							
-				- 822 							
- 5				- - 820 -							
_						ן נ					
 10 —				- - - 816							
_				-							
_				- 814							
 15 —				- 812 - -	N/A	– N/A –	N/A	N/A			
-				- 							
_				- 808							
20 —				- 							
_											
-				- - 		L					
25 —											
_				-							
				- 798 - - -							
30 —			AUGER REFUSAL AT 30 FEET						No groundwater encountered at time of drilling		
				794							
Notes	s :				SPT = BGS =	Standard Penetration Below Ground Surfac	Testing e				
					H:/Str	ater Boring Logs/					

	12M	ншт					lill Rd &	Peachtree Battle	e Avenue NW
PROJECT	NAM	E:	Source Outfoll			WATER LEVEL - IMI	MEDIATE:		
PROJECT	NUM	BER:				DRILLING METHOD	/TYPE:	1	BORING DEPTH:
20	16.5 BY	764.0	1			SPT Holl	ow Sten	n Augers	
Ar	dre	w Ray	rsin			9/6/2016			N/A
Drilling Ki	Con Imai	npany/ n Bros	/ Drill Rig s Inc / CME 550			X COORDINATE/LA 1228912	T (ft): 3.65		Y COORDINATE/LONG (ft): 2424552.82
2			LITHOLOGY			SPT			
FO	EVE E	с П				-		N-value (bpf)	
H BE	RL	BOLO	GEOLOGIC DESCRIPTION OF	NOL	ERY %)		ш С	25 5 75	
EPT	ATE	SYN	SOIL AND ROCK STRATA	(Ft	in. or	Blows/6"	PV-V (pt	0 0 0 0	NOTES
	\$				RE				Chroight output horizo
0			Sand-slity (Residual)	-					Straight auger boning
-	1			- 820					
_	-			-					
				-					
-	1			- 818					
_	-			-					
				-					
5 —	1			- 816		h (-		
_				-					
				-					
-	1			- 814					
_	-			-					
				-					
-	1			- 812					
10 —				-		- N/A -			
				-					
-	1			- 810					
_				-					
				-					
-	-			- 808					
_				-					
				-					
15 —	-			- 806	N/A		N/A	N/A	
				-		l			
				-					
-	-			- 804					
				-					
				-					
	-			- 802					
20 -									
20			Partially weathered rock	-					
	-	CHA I	AUGER REFUSAL AT 21 FFFT						No groundwater encountered at time of drilling
				-					
Note	s :				SPT =	Standard Penetration	Testing		
					TOD =	Time of Drilling	~~		
L									

Piezometer Installation Logs

	TFI		ONSULTING		•		•••••		HM-4 HM-4
CLIEN	<u> </u>	<u> </u>			DRILLIN	G CON	RACTOR:		GROUND SURFACE ELEV .:
CH2	:M HI	ILL			Kilma	an Br	s Inc		820
PROJE	ECT:				DRILLIN	G EQU	PMENT:		TOC ELEVATION:
Ном	/ell N	∕ill S∉	ewer Outfall		CME-	550			
PROJE	ECT N	UMBE	iR:		DRILLIN	G MET	IOD:		DEPTH TO WATER:
2016	3.576	54.01			Hollo	w Ste	n Auger		17
_OGGE	ED BY	ः Rays	in		SAMPLI	NG ME	HOD: nuous split spoon s	ampler	LOCATION: Atlanta, Georgia
h (feet)	scs	aphic -og	Description		Samples		Sketch	Well Cor	estruction Details
Dept	Ë	Sn Gr		% REC	# Blows	OVM	_		
0	CL		Clay, some sand and silt;	24	3-5-7-7	_			Riser Height from Ground Surface:
2 ·	-		Silt-some to trace sand and		4567			-	- Annular Fill:
4 -	-	'	(Residual)	24	4-5-6-1	-		-	– Annular Sealant:
6		'		24	6-7-8-9			-	Bentonite Filter:
۔ ع	_	'		24	5-5-6-7	-		-	Sand PVC Well Diameter
10	-	'		20	4-4-4-5	-		_	2 Inch Bore Hole Diameter:
10	-	'		24	4-5-5-5	-		-	6.00 Inches Top of Screen:
12 -	-	'		24	5-6-6-6	-		-	20 Screen Length:
14 -		'		24	6-7-9-11	-		-	10 Feet Screen Slot Size:
16		'		24	6-8-8-7	-		-	0.010 Incn Bottom of Screen:
18 -		'		24	4-4-8-9	+		-	Bottom of Well:
20 -	-			20	5.7-10-12			-	JU FEEL Total Depth:
22 -	-	'		20	0-1-10 1-			-	Completion:
24	-			22	6-10-10		E F	-	Flush Mount Easting:
26 ·	-	'		24	12-10-10-12	-	E E	-	2424195.54
28 ·	-	'		20	8-8-10-11		Ę	-	Northing: 12289043.87
- 30	-		Poring Terminated	24	6-9-11-17	-		-	Date Completed:
32								-	9/2/2010 Date Started:
34									9/2/2016
26	-	!					ļ	 Solid riser	
00 20	-						ļ	– Manhole Co	ver
30 10	-						-	- 🔯 Fill - 💋 Bentonite se	eal
40 -	-	!							
42 -	-				I			- 📕 Filter раск	24-Hour Groundwater Level: 18.35
44 -	-				l		-	Soil	Groundwater Level After Development; 17.55
46								- 📕 Cap — 🕅 Slough	Groundwater Level
48			<u> </u>					LT 0.000	At time or Driving.

UNI	TEC) C(ONSULTING								
CLIEN	<u>- —</u> -				DRILLIN	IG CON	ITRACTOR:		G	GROUND SURFA	CE ELEV.:
CH2		LL			Kilma	an Br				784	
PROJE			owor Outfall		CME	IG EQU -550	IPMENT:		T	OC ELEVATION	
PROJ					DRILLIN	IG MET	HOD:		C	EPTH TO WATE	R:
201	6.576	4.01			Hollo	ow Ste	em Auger			10	
LOGGI	ED BY	:	_		SAMPLI	NG ME	THOD:		L	OCATION:	
And 	rew I	Rays	in		2-100	t con	tinuous split spoon s	sample	r	Atlanta, Geo	rgia
epth (fee	NSCS	Graphic Log	Description		Samples	;	Sketch		Well Cons	truction De	tails
0			Sand,trace to silty, trace	% REC	# Blows	OVM	×× ×			Riser Height from (Ground Surface:
2			clay; white-tan (Residual)	19	3-3-4-6	-		_		- Annular Fill:	-0
4				18	3-3-3-3	-		 -			
•	-			16	3-3-3-3	-				Bentonite	
0				20	3-3-4-4	-				Filter: Sand	
8	SM			14	5-5-6-7	-		_		PVC Well Diamete 2 Inch	r
10	-							_		Bore Hole Diamete 6.00 Inch	er: 9 S
12				18	7-8-9-6	-		_		Top of Screen: 10	
14				24	2-2-3-3	-				Screen Length: 10 Feet	
40	-			24	2-3-5-5	-				Screen Slot Size: 0.010 Incl	1
10	-	Ш	Silt, some sand, trace clay;	24	2-4-5-6	-				Bottom of Screen: 20 Feet	
18	ML			24	3-4-4-10	-		-		Bottom of Well: 20 Feet	
20			Boring Terminated					_		Total Depth:	
22	-							_		Completion:	
24	-							 		Flush Me	ount
26	-							 		Easting: 2423554.	82
28								-		12289192	2.94
30								-		Date Completed: 9/2/2016	
32								_		Date Started: 9/1/2016	
34	-							_	Legend Title		*****
36									Solid riser		
38	-							- 🕅	Manhole Cove	r	
40								- 2	Bentonite seal		
42									Screen Filter back		
ч <u>г</u> ЛЛ								_	end cap	24-Hour Groundwater Lev	/el: 11.25
 16									Soil Cap	Groundwater Le After Developme	vel ent: 10.7
40 48								- 54	Slough	Groundwater Lev At Time of Drillin	/el g: 18.5

Rock Core Photos

Rock Core from HM-5 (26.5' – 35.0') Run 1: REC= 100% RQD = 84.2% Run 2: REC= 100% RQD = 92.8%

Rock Core from HM-6 (20.0' – 30.0') Run 1: REC=100% RQD =21.7% Run 2: REC=100% RQD =38.3%

Rock Core from HM-9 (30.0' – 35.0') Run 1 : REC=100% RQD=60%

United Consulting – Lab Test Results

HOWELL MILL SEWER OUTFALL SUMMARY OF SOIL DATA

											Grain Size	e								
Sam	ple			Soil	AsR'cd		Atte	r ber g		D	istributio	n	Compa	action						Additional
Identifi	cation	Sample	Sample	Classi-	Moisture		Li	mits		% Finer	% Finer	% Finer	Maximum	Optimum		Organic	Unit V	Veight	Permeability	Tests
Borehole	Sample	Туре	Depth	fication	%			-		No. 4	No. 200	.005	Dry Density	Moisture	Gs	Contant	Moisture	Dry	(cm/sec)	Conducted
Number	ID					L.L.	P.L.	P.I.	L.I.	Sieve	Sieve	mm	(Ib/cuft)	%		%	%	(Ib/cuft)		(See Notes)
HM-1	3	BAG	4-6	ML	8.6	NV	NP	NP	-	99.7	50.6	9.5	-	-	-	-	-	-	-	-
HM-2	5	BAG	8-10	SM	11.9	NV	NP	NP	-	97.0	31.9	5.2	-	-	-	-	-	-	-	-
HM-3	6	BAG	10-12	(ML)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	P, R
HM-3	9	BAG	18-20	ML	17.5	29	42	13	-	99.5	55.1	6.6	-	-	-	-	-	-	-	-
HM-4	12	BAG	24-26	CL	24.1	25	40	15	-	99.5	62.1	5.0	-	-	-	-	-	-	-	-
HM-5	8	BAG	16-18	ML	31.8	28	35	7	-	98.6	55.4	4.0	-	-	-	-	-	-	-	-
HM-6	7	BAG	14-16	SM	9.6	NV	NP	NP	-	94.9	36.6	3.7	-	-	-	-	-	-	-	-
HM-7	5	BAG	8-10	(ML)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	P, R
HM-7	6	BAG	12-14	ML	35.1	35	43	8	-	99.8	58.4	5.6	-	-	-	-	-	-	-	-
HM-8	3	BAG	4-6	ML	25.7	32	47	15	-	89.9	59.2	31.6	-	-	-	-	-	-	-	-

ABBREVIATIONS: LIQUID LIMIT (LL) PLASTIC LIMIT (PL) PLASTICITY INDEX (PI) LIQUIDITY INDEX (LI) SPECIFIC GRAVITY (GS) MOISTURE (Mc)

U = UNCONFINED COMPRESSION TEST

C = CONSOLIDATION TEST

DS = DIRECT SHEAR TEST

O = ORGANIC CONTENT

P = pH

R = SOIL RESISTIVITY

Vc = VOLUME/SHRINKAGE CHANGE

Corrosivity Series ASTM G51, G57 / AASHTO T289, T288 / UC SOP L6, L40

PROJECT:

PROJECT No.:

HOWELL MILL RD OUTFALL SEWER

2016.5764.01

TESTING DATE:

10/3/2016

Sample	Soil pH	Soil Resistivity					
ID	s.u.	(Ω-cm)					
1. <u>HM-3@10.0-12.0'</u>	4.55	72,000					
2. <u>HM-7@8.0-10.0'</u>	4.22	15,000					
3.							
4.							
5.							
6.							
7.							
8.							
9.							
10.							

PROJECT:	HOWELL MILL RD OUTFALL SEWER
PROJECT No.:	2016.5764.01
SAMPLE No.:	<u>HM-5@27-28</u>
TESTING DATE:	9/15/2016
TESTED BY:	MS

	SPECIMEN CONDITIONS / TEST RESULTS							
1.	DIAMETER	1.87	in.					
2.	HEIGHT	4.01	in.					
3.	MAXIMUM LOAD	27,420	lb.					
4.	CROSS SECTIONAL AREA	2.74	in²					
5.	CORRECTION FACTOR	1.00						
6.	UNCONFINED COMPRESSIVE STRENGTH	10,005.2	psi					

PROJECT:	HOWELL MILL RD OUTFALL SEWER				
PROJECT No.:	2016.5764.01				
SAMPLE No.:	<u>HM-5@32-33</u>				
TESTING DATE:	9/15/2016				
TESTED BY:	DM				

	SPECIMEN CONDITIONS / TEST RESULT	S	
1.	DIAMETER	1.87	in.
2.	HEIGHT	4.17	in.
3.	MAXIMUM LOAD	46,680	lb.
4.	CROSS SECTIONAL AREA	2.74	in²
5.	CORRECTION FACTOR	1.00	
6.	UNCONFINED COMPRESSIVE STRENGTH	17,051.1	osi

PROJECT:	HOWELL MILL RD OUTFALL SEWER				
PROJECT No.:	2016.5764.01				
SAMPLE No.:	<u>HM-6@20-21</u>				
TESTING DATE:	9/15/2016				
TESTED BY:	MS				

	SPECIMEN CONDITIONS / TEST RESULT	S	
1.	DIAMETER	1.87	in.
2.	HEIGHT	3.89	in.
3.	MAXIMUM LOAD	12,440	lb.
4.	CROSS SECTIONAL AREA	2.73	in²
5.	CORRECTION FACTOR	1.00	
6.	UNCONFINED COMPRESSIVE STRENGTH	4,553.8	psi

PROJECT:	HOWELL MILL RD OUTFALL SEWER				
PROJECT No.:	2016.5764.01				
SAMPLE No.:	<u>HM-6@25-26</u>				
TESTING DATE	9/15/2016				
TESTED BY:	DM				

	SPECIMEN CONDITIONS / TEST RESULT	S	
1.	DIAMETER	1.87	in.
2.	HEIGHT	3.46	in.
3.	MAXIMUM LOAD	26,720	lb.
4.	CROSS SECTIONAL AREA	2.73	in²
5.	CORRECTION FACTOR	1.00	
6.	UNCONFINED COMPRESSIVE STRENGTH	9,781.1	psi

FTS – Lab Test Results

Analytical Report A6I0073

Project Howell Mill Sewer Outfall

Project Number 2016.5764.01

September 19, 2016 United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071

Minority Women Business Enterprise Small Disadvantaged Business Enterprise

Minority Women Business Enterprise Small Disadvantaged Business Enterprise

> Phone #:770-449-8800 Website: www.ftsanalytical.com

6017 Financial Dr. Norcross, GA 30071

September 19, 2016

Aaron Epstein United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071

RE: Howell Mill Sewer Outfall

We are reporting the results of the analyses performed on the samples recieved on 9/12/2016 under the project name referenced above and identified as the lab Work Order A6I0073. All results being reported under this Report apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontracted lab, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reporting using all other available quality control methods.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by FTS Analytical Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise agreed upon. The samples received, and described as recorded in Work Order A610073 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise agreed upon. We reserve the right to return to you any unused samples, extracts, or solutions if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding standard practices, controlled/regulated substances, etc.)

We thank you for selecting FTS Analytical to serve your analytical needs. If you have any questions concerning this report, please do not hesitate to contact us at any time. We will be happy to help.

Sincerely,

Roundary

J. Derek Rounsley Project Manager

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/19/2016 15:17

Samples in this Report

Lab ID	Sample	Matrix	Date Sampled	Date Received
A6I0073-01 A6I0073-02	HM-3 HM-7	Solid	12-Sep-2016 00:00	12-Sep-2016 12:15

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/19/2016 15:17

Hits Summary

(Not Including Subcontracted Analysis)

Sample: HM-3

Lab ID: A6I0073-01

Analyte	Result	RL	Units	Dil	Date Analyzed	Qual	CAS #	Method
pH	4.55	0.0100	SU	1	9/13/16 11:20			EPA 9040/1311
% Solids	86.4	0.100	%	1	9/13/16 7:15			SM 2540G
Percent Moisture	13.6	0.100	%	1	9/13/16 7:15			SM 2540G

Sample: HM-7

Lab ID: A6I0073-02

Analyte	Result	RL	Units	Dil	Date Analyzed	Qual	CAS #	Method	
pН	4.56	0.0100	SU	1	9/13/16 11:20			EPA 9040/1311	
% Solids	83.3	0.100	%	1	9/13/16 7:15			SM 2540G	
Percent Moisture	14.7	0.100	%	1	9/13/16 7:15			SM 2540G	

MWBE SDBE
NELAC DoD Accredited

United Consulting -Norcross 625 Holcomb Bridge Road		Pi Project Nu	roject: Howell Imber: 2016.5		R	leported:		
Norcross, GA 30071		Project Ma	nager: Aaron I	Epstein			09/1	9/2016 15:17
		Sam	ple Result	S				
Client Sample ID: HM-3 Lab Sample ID: A6I0073-01 (Solid)						Sampled: 9/12/16 0:00		
Analyte	Result	RL	Units	Dil	Date Prepared	Date Analyzed	Qual	CAS #
Anions by Method 9056								
Chloride	ND	116	mg/Kg dry	10	9/16/16 9:33	9/16/16 21:49	U	16887-00-6
Sulfate	ND	116	mg/Kg dry	10	9/16/16 9:33	9/16/16 21:49	U	14808-79-8
Percent Moisture by Method 2540G								
% Solids	86.4	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
Percent Moisture	13.6	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
pH S by Method 9045D								
рН	4.55	0.0100	SU	1	9/13/16 10:30	9/13/16 11:20		

٦

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071		Pr Project Nu Project Mar	roject: Howell mber: 2016.5 nager: Aaron B	Mill Sev 764.01 Epstein	Reported: 09/19/2016 15:17			
		Samı (C	ole Result	S				
Client Sample ID: HM-7 Lab Sample ID: A6I0073-02 (Solid)					Sampled: 9/12/16 0:00			
Analyte	Result	RL	Units	Dil	Date Prepared	Date Analyzed	Qual	CAS #
Anions by Method 9056								
Chloride	ND	120	mg/Kg dry	10	9/16/16 9:33	9/16/16 22:08	U	16887-00-6
Sulfate	ND	120	mg/Kg dry	10	9/16/16 9:33	9/16/16 22:08	U	14808-79-8
Percent Moisture by Method 2540G								
% Solids	83.3	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
Percent Moisture	14.7	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
pH S by Method 9045D								
pH	4.56	0.0100	SU	1	9/13/16 10:30	9/13/16 11:20		

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/19/2016 15:17

Quality Control

Anions by Method 9056

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0393										
Blank (B610393-BLK1)					Prepared	& Analyzed: 9	/16/2016			
Chloride	ND	U	20.0	mg/Kg wet						
Sulfate	ND	U	20.0	mg/Kg wet						
LCS (B6I0393-BS1)					Prepared	& Analyzed: 9	/16/2016			
Chloride	200		20.0	mg/Kg wet	200		100	80-120		
Sulfate	189		20.0	mg/Kg wet	200		94	90-110		
LCS Dup (B6I0393-BSD1)					Prepared	& Analyzed: 9				
Chloride	199		20.0	mg/Kg wet	200		99	80-120	0.7	15
Sulfate	200		20.0	mg/Kg wet	200		100	90-110	6	20
Duplicate (B6I0393-DUP1)		Source: L6	0094-03		Prepared	& Analyzed: 9	/16/2016			
Chloride	ND	U	24.1	mg/Kg dry		ND				15
Sulfate	35.7		24.1	mg/Kg dry		35.5			0.8	15
Matrix Spike (B6I0393-MS1)		Source: L6	10094-03		Prepared	& Analyzed: 9)/16/2016			
Chloride	250		24.1	mg/Kg dry	241	ND	104	75-125		
Sulfate	298		24.1	mg/Kg dry	241	35.5	109	75-125		
Matrix Spike Dup (B6I0393-MSD1)		Source: L6	[0094-03		Prepared	& Analyzed: 9)/16/2016			
Chloride	242		24.1	mg/Kg dry	241	ND	101	75-125	3	20
Sulfate	293		24.1	mg/Kg dry	241	35.5	107	75-125	1	20

Project: Howell Mill Sewer Outfall	
Project Number: 2016.5764.01	Reported:
Project Manager: Aaron Epstein	09/19/2016 15:17
	Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Quality Control

(Continued)

Percent Moisture by Method 2540G

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0236										
Duplicate (B6I0236-DUP1) Source: A6I0064-01				Prepared: 9/12/2016 Analyzed: 9/13/2016						
% Solids	93.3		0.100	%		93.4			0.1	20
Percent Moisture	6.71		0.100	%		6.62			1	20

United Consulting -Norcross	Project: Howell Mill Sewer Outfall	
625 Holcomb Bridge Road	Project Number: 2016.5764.01	Reported:
Norcross, GA 30071	Project Manager: Aaron Epstein	09/19/2016 15:17
	Quality Control (Continued)	

pH S by Method 9045D

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0253										
Duplicate (B6I0253-DUP1)	te (B6I0253-DUP1) Source: A6I0073-01			Prepared & Analyzed: 9/13/2016						
pH	4.52		0.0100	SU		4.55			0.7	20

United Consulting -Norcross	Project: Howell Mill Sewer Outfall	
625 Holcomb Bridge Road	Project Number: 2016.5764.01	Reported:
Norcross, GA 30071	Project Manager: Aaron Epstein	09/19/2016 15:17

List of Certifications

Number	Description	Code	Facility	Expires
04176	LA CERTIFICATE	LANELAC	FTSA	06/30/2016
483	NC CERTIFICATE	ANC	FTSA	12/31/2016
85	KENTUKY CERTIFICATE	KENTUKY	FTSA	
98015	SC CERTIFICATE	ASC	FTSA	06/30/2017
E84098	FL NELAC CERTIFICATE	LFLNELAC	FTSL	06/30/2017
E87429	FL NELAC CERTIFICATE	AFLNELAC	FTSA	06/30/2017
LI0-135	DoD CERTIFICATE	DOD	FTSA	06/30/2016
P330-07-00105	USDA CERTIFICATE	USDA	FTSA	

Notes and Definitions

Item	Definition
Dry	Sample results reported on a dry weight basis.
U or ND	Analyte NOT DETECTED at or above the reporting limit.
Α	Suspected adol-condensation product
В	Analyte detected in the method blank
С	Confirmed by GC/MS analysis
E	Concentration exceeds calibration range
К	Hold Time exceeded
J	Estimated Value
Ν	Tentatively Identified Compound
Р	>25% difference between primary and secondary columns
S	Quantitation based on single-point calibration
Х	QC Failure see Case Narrative
RPD	Relative Percent Difference
%REC	Percent Recovery

Source Sample that was matrix spiked or duplicated.

SAMPLE CHAIN-OF-CUSTODY RECORD

ACTODAS UNITED CONSULTING 625 Holcomb Bridge NORCROSS, GEORGIA 30071 (770) 209-0029 FAX (770) 582-2895

(tit)					lipmen.							
ANALYSES (indicate tar)	بدينة	-r4 JeisəS	ł	x x	x x							
	əpi:	Chlor		x	×				r		COMMENTS	
	99 EbV	1 1fate 205	S	x	×						DATE/ TIME	1:40
101		91505	# / State of Cont.	1 x 8oz	1 x 8oz						1 1	9/12/110
Project # 2016.5764	Rafael Ospina 404)583-2670		Preserva- tive	Ice	lce						SAMPLES ACCURTER Y	Jelu
		FTS	Sample Matrix	s	s						0	Z
fall	PROJECT MANAGER.	RECEIVING LAB	Date Shipped	9/12/2016	9/12/2016						DATE	9-12-16
Howell Mill Sewer Out	CONTACT Mahvand Saleki msaleki@unitedconsulting.co	рномеле 770-582-2846	SAMPLE DESCRIPTION	Soil @8.0-10.0'	Soil @6.0-8.0'				4		SAMPLES RELINCUSHED BY	2
PROJECT NAME	IAT # DUE DATE STA		SAMPLE NUMBER	HM-3	7-MH						1	Marton

Page 11 of 11

Analytical Report A6I0073

Project Howell Mill Sewer Outfall

Project Number 2016.5764.01

September 30, 2016 United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071

Minority Women Business Enterprise Small Disadvantaged Business Enterprise

Minority Women Business Enterprise Small Disadvantaged Business Enterprise

> Phone #:770-449-8800 Website: www.ftsanalytical.com

6017 Financial Dr. Norcross, GA 30071

September 30, 2016

Aaron Epstein United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071

RE: Howell Mill Sewer Outfall

We are reporting the results of the analyses performed on the samples recieved on 9/12/2016 under the project name referenced above and identified as the lab Work Order A6I0073. All results being reported under this Report apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontracted lab, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reporting using all other available quality control methods.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by FTS Analytical Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise agreed upon. The samples received, and described as recorded in Work Order A6I0073 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise agreed upon. We reserve the right to return to you any unused samples, extracts, or solutions if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding standard practices, controlled/regulated substances, etc.)

We thank you for selecting FTS Analytical to serve your analytical needs. If you have any questions concerning this report, please do not hesitate to contact us at any time. We will be happy to help.

Sincerely,

Roundary

J. Derek Rounsley Project Manager

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/30/2016 13:55

Samples in this Report

Lab ID	Sample	nple Matrix Date Sar				
A6I0073-01 A6I0073-02	HM-3 HM-7	Solid	12-Sep-2016 00:00	12-Sep-2016 12:15		

MWBE SDBE

NELAC DoD Accredited

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/30/2016 13:55

Hits Summary

(Not Including Subcontracted Analysis)

Sample: HM-3

Lab ID: A6I0073-01

Analyte	Result	RL	Units	Dil	Date Analyzed	Qual	CAS #	Method
рН	4.55	0.0100	SU	1	9/13/16 11:20			EPA 9040/1311
Resistivity	64100		mg/L	1	9/22/16 9:57			SM 2540C
% Solids	86.4	0.100	%	1	9/13/16 7:15			SM 2540G
Percent Moisture	13.6	0.100	%	1	9/13/16 7:15			SM 2540G

Sample: HM-7

Lab ID: A6I0073-02

Analyte	Result	RL	Units	Dil	Date Analyzed	Qual	CAS #	Method	
pН	4.56	0.0100	SU	1	9/13/16 11:20			EPA 9040/1311	
Resistivity	39500		mg/L	1	9/22/16 9:57			SM 2540C	
% Solids	83.3	0.100	%	1	9/13/16 7:15			SM 2540G	
Percent Moisture	14.7	0.100	%	1	9/13/16 7:15			SM 2540G	

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071		Pr Project Nu Project Mar	oject: Howell mber: 2016.5 nager: Aaron E	Mill Sev 764.01 Epstein	wer Outfall	Reported: 09/30/2016 13:55					
		Samj	ole Result	S							
Client Sample ID: HM-3 Lab Sample ID: A6I0073-01 (Solid)						Sampled: 9/12/16 0:00					
Analyte	Result	RL	Units	Dil	Date Prepared	Date Analyzed	Qual	CAS #			
Anions by Method 9056											
Chloride	ND	116	mg/Kg dry	10	9/16/16 9:33	9/16/16 21:49	U	16887-00-6			
Sulfate	ND	116	mg/Kg dry	10	9/16/16 9:33	9/16/16 21:49	U	14808-79-8			
Percent Moisture by Method 2540G											
% Solids	86.4	0.100	%	1	9/12/16 7:30	9/13/16 7:15					
Percent Moisture	13.6	0.100	%	1	9/12/16 7:30	9/13/16 7:15					
pH S by Method 9045D											
рН	4.55	0.0100	SU	1	9/13/16 10:30	9/13/16 11:20					
TDS by Method 2540C											
Resistivity	64100		mg/L	1	9/22/16 9:57	9/22/16 9:57					

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071		Pr Project Nu Project Mar	roject: Howell mber: 2016.5 nager: Aaron B	Reported: 09/30/2016 13:55				
		Samı (C	ple Result	S				
Client Sample ID: HM-7 Lab Sample ID: A6I0073-02 (Solid)						Sa 9/	mpled: 12/16 0:	00
Analyte	Result	RL	Units	Dil	Date Prepared	Date Analyzed	Qual	CAS #
Anions by Method 9056								
Chloride	ND	120	mg/Kg dry	10	9/16/16 9:33	9/16/16 22:08	U	16887-00-6
Sulfate	ND	120	mg/Kg dry	10	9/16/16 9:33	9/16/16 22:08	U	14808-79-8
Percent Moisture by Method 2540G								
% Solids	83.3	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
Percent Moisture	14.7	0.100	%	1	9/12/16 7:30	9/13/16 7:15		
pH S by Method 9045D								
рН	4.56	0.0100	SU	1	9/13/16 10:30	9/13/16 11:20		
TDS by Method 2540C								
Resistivity	39500		mg/L	1	9/22/16 9:57	9/22/16 9:57		

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071 Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein

Reported: 09/30/2016 13:55

Quality Control

Anions by Method 9056

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0393										
Blank (B6I0393-BLK1)					Prepared	& Analvzed: 9	9/16/2016			
Chloride	ND	U	20.0	ma/Ka wet	-1	,				
Sulfate	ND	U	20.0	mg/Kg wet						
LCS (B6I0393-BS1)					Prepared	& Analyzed: 9	9/16/2016			
Chloride	200		20.0	mg/Kg wet	200		100	80-120		
Sulfate	189		20.0	mg/Kg wet	200		94	90-110		
LCS Dup (B6I0393-BSD1)					Prepared	& Analyzed: 9	9/16/2016			
Chloride	199		20.0	mg/Kg wet	200		99	80-120	0.7	15
Sulfate	200		20.0	mg/Kg wet	200		100	90-110	6	20
Duplicate (B6I0393-DUP1)		Source: L6	10094-03		Prepared	& Analyzed: 9	9/16/2016			
Chloride	ND	U	24.1	mg/Kg dry		ND				15
Sulfate	35.7		24.1	mg/Kg dry		35.5			0.8	15
Matrix Spike (B6I0393-MS1)		Source: L6	10094-03		Prepared	& Analyzed: 9	9/16/2016			
Chloride	250		24.1	mg/Kg dry	241	ND	104	75-125		
Sulfate	298		24.1	mg/Kg dry	241	35.5	109	75-125		
Matrix Spike Dup (B6I0393-MSD1)		Source: L6	10094-03		Prepared	& Analyzed: 9	9/16/2016			
Chloride	242		24.1	mg/Kg dry	241	ND	101	75-125	3	20
Sulfate	293		24.1	mg/Kg dry	241	35.5	107	75-125	1	20

Result

Qual

United Consulting -Norcross 625 Holcomb Bridge Road Norcross, GA 30071	ss Project: Howell Mill Sewer Outfall Project Number: 2016.5764.01 Project Manager: Aaron Epstein								
Quality Control (Continued)									
TDS by Method 2540C									
	Reporting	Spike	Source	%REC	RPD				

Units

Level

Result

%REC

Limits

RPD

Limit

Batch: B6I0497

Analyte

Duplicate (B6I0497-DUP1)	Source: A6I0073-01		Prepared & Analyzed: 9/22/2016		
Resistivity	64100	mg/L	64100	0	20

Limit

United Consulting -Norcross	Project: Howell Mill Sewer Outfall	
625 Holcomb Bridge Road	Project Number: 2016.5764.01	Reported:
Norcross, GA 30071	Project Manager: Aaron Epstein	09/30/2016 13:55

Quality Control

(Continued)

Percent Moisture by Method 2540G

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0236										
Duplicate (B6I0236-DUP1)	:	Source: A6I	0064-01	Pr	epared: 9/12,	/2016 Analyze	ed: 9/13/201	16		
% Solids	93.3		0.100	%		93.4			0.1	20
Percent Moisture	6.71		0.100	%		6.62			1	20

United Consulting -Norcross	Project: Howell Mill Sewer Outfall	
625 Holcomb Bridge Road	Project Number: 2016.5764.01	Reported:
Norcross, GA 30071	Project Manager: Aaron Epstein	09/30/2016 13:55
	Quality Control (Continued)	

pH S by Method 9045D

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B6I0253										
Duplicate (B6I0253-DUP1)	S	Source: A6I	0073-01		Prepared	& Analyzed: 9,				
рН	4.52		0.0100	SU		4.55			0.7	20

United Consulting -Norcross	Project: Howell Mill Sewer Outfall	
625 Holcomb Bridge Road	Project Number: 2016.5764.01	Reported:
Norcross, GA 30071	Project Manager: Aaron Epstein	09/30/2016 13:55

List of Certifications

Number	Description	Code	Facility	Expires
04176	LA CERTIFICATE	LANELAC	FTSA	06/30/2016
483	NC CERTIFICATE	ANC	FTSA	12/31/2016
85	KENTUKY CERTIFICATE	KENTUKY	FTSA	
98015	SC CERTIFICATE	ASC	FTSA	06/30/2017
E84098	FL NELAC CERTIFICATE	LFLNELAC	FTSL	06/30/2017
E87429	FL NELAC CERTIFICATE	AFLNELAC	FTSA	06/30/2017
LI0-135	DoD CERTIFICATE	DOD	FTSA	06/30/2016
P330-07-00105	USDA CERTIFICATE	USDA	FTSA	

Notes and Definitions

Item	Definition
Dry	Sample results reported on a dry weight basis.
U or ND	Analyte NOT DETECTED at or above the reporting limit.
Α	Suspected adol-condensation product
В	Analyte detected in the method blank
С	Confirmed by GC/MS analysis
E	Concentration exceeds calibration range
К	Hold Time exceeded
J	Estimated Value
Ν	Tentatively Identified Compound
Р	>25% difference between primary and secondary columns
S	Quantitation based on single-point calibration
х	QC Failure see Case Narrative
RPD	Relative Percent Difference
%REC	Percent Recovery

 %REC
 Percent Recovery

 Source
 Sample that was matrix spiked or duplicated.

SAMPLE CHAIN-OF-CUSTODY RECORD

ACTODAS UNITED CONSULTING 625 Holcomb Bridge NORCROSS, GEORGIA 30071 (770) 209-0029 FAX (770) 582-2895

dicate target list)				4							-	
NALYSES (ii	AIIAI	teies	Я	x	x							
	ł	Hd		x	×						STV	
	əpi	Chlor		x	x						COMMEN	,
	99 EbV	əteflu 205	IS	x	x				r		ATE/ ME	1.400
1.01		PO#: 91505	#/-State of Cont.	1 x 8oz	1 x 8oz							9/12/110
Project # 2016.576	Rafael Ospina (404)583-2670		Preserva- tive	Ice	lce						SAMPLES ACCUPT -Y	rele
		FTS	Sample Matrix	s	s						0	3
tfall	PROJECT MANAGER.	RECEIVING LAB:	Date Shipped	9/12/2016	9/12/2016						DATE	9-12-10
Howell Mill Sewer Out	CONTACT Mahvand Saleki msaleki@unitedconsulting.co	рномеле 770-582-2846	SAMPLE DESCRIPTION	Soil @8.0-10.0'	Soil @6.0-8.0'				1.		SAMPLES RELING UISHED BY	N.
NUMBER OF STREET	AT # DUE DATE STA		SAMPLE NUMBER	HM-3	HM-7						Y	Marton

Page 12 of 12

APPENDIX F

GeoTesting – Lab Test Results

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Transmittal

TO:

Mahvand Saleki

United Consulting Group

625 Holcomb Bridge Road

Norcross, GA 30071

DATE: 9/21/2016	DATE: 9/2	1/2016
-----------------	-----------	--------

GTX NO: 305340

RE: Howell Mill Sewer Outfall

COPIES	DATE	DESCRIPTION
	9/21/2016	September 2016 Laboratory Test Report

REMARKS:

	SIGNED: Jon Tam
CC:	Jonathan Campbell, Assistant Laboratory Manager
	APPROVED BY: Mark Dobday, P.G., Laboratory Manager

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

September 21, 2016

Mahvand Saleki United Consulting Group 625 Holcomb Bridge Road Norcross, GA 30071

RE: Howell Mill Sewer Outfall, Atlanta, GA (GTX-305340)

Dear Mahvand Saleki:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received three samples from you on 9/19/2016. These samples were labeled as follows:

Boring Number	Sample Number	Depth
1	HM-5	27-28 ft
2	HM-6	25-26 ft
3	HM-9	34-35 ft

GTX performed the following tests on these samples:

3 ASTM D7625 -CERCHAR Abrasivity Index (CAI)

A copy of your test request is attached.

The results presented in this report apply only to the items tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of these samples will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

ann

Jonathan Campbell Assistant Laboratory Manager

Technologies to manage risk for infrastructure

Boston Atlanta Chicago Los Angeles New York www.geotesting.com

Geotechnical Test Report

9/21/2016

GTX-305340 Howell Mill Sewer Outfall

Atlanta, GA

Client Project No.: 2016-5764-01

Prepared for:

United Consulting Group

Client:	United Consulting Group				
Project:	Howell Mill Sewer Outfall				
Location:	Atlanta GA			Project No:	GTX-305340
Boring ID:	1	Sample Type:	cylinder	Tested By:	daa
Sample ID:	HM-5	Test Date:	09/19/16	Checked By:	jsc
Depth :	27-28 ft	Test Id:	391329		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading 2	Average	Comments	
1	HM-5	27-28 ft	1	3.5	3.8	3.65		
			2	3.4	3.7	3.55		
			3	3.9	3.8	3.85		
			4	3.3	3.2	3.25		
			5	4.2	3.8	4.00		
				Average CAIs	3.66			
				Average CAI *		4.10		
CERCHAR Abrasiveness Index Classification Extreme abrasiveness								

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

Client:	United Consulting Group				
Project:	Howell Mill Sewer Outfall				
Location:	Atlanta, GA			Project No:	GTX-305340
Boring ID:	2	Sample Type:	cylinder	Tested By:	daa
Sample ID:	HM-6	Test Date:	09/19/16	Checked By:	jsc
Depth :	25-26 ft	Test Id:	391330		
Test Comm	nent:				
Visual Desc	cription:				
Sample Co	mment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading	2 Average	Comments
2	HM-6	25-26 ft	1	3.8	3.4	3.60	
			2	4.3	4.8	4.55	
			3	3.0	3.5	3.25	
			4	4.1	3.7	3.90	
			5	3.3	3.8	3.55	
				Average CAIs	3.77		
				Average CAI *		4.21	
	ssification	Extreme abrasiveness					

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

Client:	United Consulting Group				
Project:	Howell Mill Sewer Outfall				
Location:	Atlanta, GA			Project No:	GTX-305340
Boring ID:	3	Sample Type:	cylinder	Tested By:	daa
Sample ID:	. HM-9	Test Date:	09/19/16	Checked By:	jsc
Depth :	34-35 ft	Test Id:	391331		
Test Comm	ient:				
Visual Desc	cription:				
Sample Co	mment:				

Abrasiveness of Rock Using the Cerchar Method by ASTM D7625

Boring ID	Sample ID	Depth	Stylus No	Reading 1	Reading	2 Average	Comments
3	HM-9	34-35 ft	1	0.4	0.6	0.50	
			2	0.8	0.5	0.65	
			3	1.5	1.2	1.35	
			4	0.4	0.3	0.35	
			5	1.2	1.4	1.30	
				Average CAIs	0.83		
				Average CAI *	1.30		
CERCHAR Abrasiveness Index Classification						Medium abrasiveness	

Notes

Test Surface: Saw Cut Moisture Condition: As Received Apparatus Type: Original CERCHAR Stylus Hardness: Rockwell Hardess 54/56 HRC Stylus Displacement Relative to Rock Fabric: Styli 1-3: Normal; Styli 4-5: Parallel * CAI = (0.99 * CAIs) + 0.48 CAIs = CERCHAR index for smooth (saw cut) surface CAI = CERCHAR index for natural surface Comments:

ROCK CHAIN OF CUSTODY & TEST REQUEST

				uite 320								Officer:									med								
rk 20 coll Free cax 1341 fel Fax 1g. com															or GTX Use Only Instruction Perfor														
						noiseangmoo baniinoonU (CS107 G MT8A)						11																	
309 Par MA 017: 1062 Tr 1062 Fr 0266 Fr 6575 Tr 6575 Fr 6570 Fr e5570 Fr				noissaidmo (AS107									For Sample Ir																
Acton.	800 434	978 635		2358 Pe	Atlanto	770 645	770 645	- munum	n		hees Hammer and Telon)	Total Harr (Schmidt Taber Ab	4-																
	-				_	14.11		-	_		lammer 5673)	a MT2A) a MT2A)							1		-								
							Client Project #: 2016.5764.01 Purchase Order#:	VICK		-	elisneT (neilise18) polit (73ec O MT2A) dipo (73ec O MT2A) dipo	gnitting2 Splitting																	
						ou.		urnaround: 🕴 🗸	Phone:		Unit Weight (ISRM) Petrographic Analysis (ISRM) (ISRM) Point Load Index (ASTM D 5731)* Diametral, Axial, Lump/Block (Handewilth) (Handewilth) (Handewilth) (HSTM D 4644)																		
Client)																				1									
ant from				Phone:	Cell:			lested Tu																					
INVOICE (complete if differe) 					Requ										-	_	es, etc.)									
	Company:													++			+		_	g Stress									
											(012D) 101	d MTSA)						1		Confinir									
								推し							-	-								noia (82107) IsixsinU ni ilubo	zserqmoJ 7 O MT2A) 20 O MT2A)				
		BSS:	State, Z	act:	uit.			es Orde						(95936) IsixshT ni ilubo	C MT2A) M olisel3					+		_	rmal Loa						
		Addre	City,	Conti	E-ma	ROJECT		GTX Sal	E-mail:		at (ATRA D5607)*	Direct She								rest Nor									
				2843		Id		-	c		HKC	04/DAH88		1	×					oisture, 1									
	Lavi Hive			582					Pina-Team Leader		t Abrasivity	Ceerchar A	-+	4	đ			+	_	/ and Mc									
ENT		4		(or L			Pall	Tucker					82	-26	-35					, Density									
		r. Rd	GA 3007	Ci Phone:	insul-Gell;	- Cuthan	sewer out						27	25.	34					emolded	1								
		6 9						II Rd		610										ed or Re	ATING:								
CLI	Sug	Som	1 550	Solek	ited G		nill s	I mil	105	5-62	to ch	nole ID	5	9	0.					Indisturb	AND DI								
	red c	HOH	Jorch	and :	1 8 UN	and the	I Have	HOWE	Rafae	35 (h		Sar	HWH	EH	HM					ditions (L	SIGNING								
	tion:	625	e, Zip: A	mahn	15qiek	ALC: N	ame: Ho	ocation:	ontact: F	HON		# 0							\vdash	Test Con	VIZE BY S								
	mpany	idress:	ty, State	ontact:	mail: m	1	oject Na	oject Lo	n-site Co			ore Ru	-	2	-					Specify	UTHOR								

DATE: TIME: DATE: TIME: 3 ¥ DATE: Received By: Received By: PRINT NAME: DATE: TIME: DATE: TIME: 3 Relinquished By: R Relinquished By: SIGNATURE:

6:32 4

WARRANTY and LIABILITY

GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.

GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.

GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.

Commonly Used Symbols

А	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	$\mathbf{S}_{\mathbf{r}}$	Post cyclic undrained shear strength
В	pore pressure parameter for $\Delta \sigma_3$	Т	temperature
CAI	CERCHAR Abrasiveness Index	t	time
CIU	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
CSR	cyclic stress ratio	ua	pore gas pressure
Cc	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ue	excess pore water pressure
C_u	coefficient of uniformity, D_{60}/D_{10}	u, u _w	pore water pressure
Cc	compression index for one dimensional consolidation	V "	total volume
Cα	coefficient of secondary compression	Vg	volume of gas
cv	coefficient of consolidation	Vs	volume of solids
с	cohesion intercept for total stresses	V.	shear wave velocity
c'	cohesion intercept for effective stresses	V.	volume of voids
D	diameter of specimen	V	volume of water
D	damping ratio	V.	initial volume
D_{10}	diameter at which 10% of soil is finer	v	velocity
D ₁₅	diameter at which 15% of soil is finer	W	total weight
D 30	diameter at which 30% of soil is finer	W	weight of solids
D 50	diameter at which 50% of soil is finer	W s W	weight of water
D ₆₀	diameter at which 60% of soil is finer	WW W	water content
D85	diameter at which 85% of soil is finer	w	water content at consolidation
d 50	displacement for 50% consolidation	W c	final water content
d 90	displacement for 90% consolidation	w ₁	liquid limit
d ₁₀₀	displacement for 100% consolidation	w j	ngulu mint natural water content
E	Young's modulus	w n	natural water content
e	void ratio	wp	shrinkaga limit
e.	void ratio after consolidation	w _s	initial water content
e.	initial void ratio	$\mathbf{w}_{0}, \mathbf{w}_{1}$	along of a versus n
Ğ	shear modulus	u a'	slope of q_f versus p_f
Ğ.	specific gravity of soil particles	u	slope of qf versus pf
н, Н	height of specimen	γt	drug unit weight
Hp	Rebound Hardness number	γd	ury unit weight
i	oradient	γs	unit weight of weter
Ic	Uncorrected point load strength	γw	unit weight of water
Lacro	Size corrected point load strength index	3	strain
H A	Modified Taber Abrasion	ε _{vol}	volume strain
H _m	Total hardness	$\varepsilon_h, \varepsilon_v$	norizontal strain, vertical strain
K	lateral stress ratio for one dimensional strain	μ	Poisson's ratio, also viscosity
k k	nermeability	σ'	normal stress
к II	L jaujdity Index	σ,	effective normal stress
m	coefficient of volume change	σ_c, σ_c	consolidation stress in isotropic stress system
n n	porosity	σ_h, σ_h	horizontal normal stress
PI	plasticity index	σ_v, σ_v	Vertical normal stress
D	proconsolidation pressure	σ_{vc}	Effective vertical consolidation stress
r _c	$(\sigma_1 + \sigma_2)/2$ $(\sigma_1 + \sigma_2)/2$	σ_1	major principal stress
p n'	$(o_1 + o_3)/2, (o_v + o_h)/2$ $(\sigma_1^2 + \sigma_2^2)/2, (\sigma_1^2 + \sigma_2^2)/2$	σ_2	intermediate principal stress
p n'	(0 + 0)/2, $(0 + 0)/2$	σ_3	minor principal stress
р с О	p at consolidation quantity of flow	τ	shear stress
Ŷ	$(\tau - \tau)/2$	φ	friction angle based on total stresses
Ч Л.	(0] = 03)/2	φ'	friction angle based on effective stresses
q _f	q at failure	φ'n	residual friction angle
$\mathbf{q}_0, \mathbf{q}_i$	initial q	ϕ_{ult}	φ for ultimate strength
qc	q at consolidation		

Slug Test Results

HM-4 RUN 1 SOLUTIONS

• HM-4 Slug In Run 1 – <u>High</u> Solution

• HM-4 Slug In Run 1 – <u>Automatic</u> Solution

• HM-4 Slug In Run 1 – <u>Low</u> Solution

• HM-4 Slug Out Run 1 – <u>High</u> Solution

• HM-4 Slug Out Run 1 – <u>Automatic</u> Solution

• HM-4 Slug Out Run 1 – <u>Low</u> Solution

HM-4 RUN 2 SOLUTIONS

• HM-4 Slug In Run 2 – <u>High</u> Solution

HM-4 Slug In Run 2 – <u>Automated</u> Solution

HM-4 Slug In Run 2 – <u>Low</u> Solution •

• HM-4 Slug Out Run 2 – <u>High</u> Solution

• HM-4 Slug Out Run 2 – <u>Automated</u> Solution

• HM-4 Slug Out Run 2 – <u>Low</u> Solution

HM-4 RUN 3 SOLUTIONS

• HM-4 Slug In Run 3 – <u>High</u> Solution

• HM-4 Slug In Run 3 – <u>Automated</u> Solution

Aquifer Model Unconfined Solution Bouwer-Rice Parameters K = 1.271E-6 ft/sec y0 = 0.24 ft

HM-4 Slug In Run 3 – <u>Low</u> Solution ٠

• HM-4 Slug Out Run 3 – <u>High</u> Solution

• HM-4 Slug Out Run 3 – <u>Automated</u> Solution

• HM-4 Slug Out Run 3 – <u>Low</u> Solution

HM-7 RUN 1 SOLUTIONS

• HM-7 Slug In Run 1 – <u>High</u> Solution

• HM-7 Slug In Run 1 – <u>Automatic</u> Solution

• HM-7 Slug In Run 1 – <u>Low</u> Solution

• HM-7 Slug Out Run 1 – <u>High</u> Solution

• HM-7 Slug Out Run 1 – <u>Automatic</u> Solution

• HM-7 Slug Out Run 1 – <u>Low</u> Solution

HM-7 RUN 2 SOLUTIONS

• HM-7 Slug In Run 2 – <u>High</u> Solution

• HM-7 Slug In Run 2 – <u>Automated</u> Solution

• HM-7 Slug In Run 2 – <u>Low</u> Solution

• HM-7 Slug Out Run 2 – <u>High</u> Solution

• HM-7 Slug Out Run 2 – <u>Automated</u> Solution

• HM-7 Slug Out Run 2 – <u>Low</u> Solution

HM-7 RUN 3 SOLUTIONS

• HM-7 Slug In Run 3 – <u>High</u> Solution

• HM-7 Slug In Run 3 – <u>Automated</u> Solution

• HM-7 Slug In Run 3 – <u>Low</u> Solution

Howell Mill Sewer Outfall 2016.5764.01 Slug Test Results

• HM-7 Slug Out Run 3 – <u>High</u> Solution

Howell Mill Sewer Outfall 2016.5764.01 Slug Test Results

• HM-7 Slug Out Run 3 – <u>Automated</u> Solution

Howell Mill Sewer Outfall 2016.5764.01 Slug Test Results

• HM-7 Slug Out Run 3 – <u>Low</u> Solution

Important Information About Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

The following information is provided to help you manage your risks.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one* — *not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineer-ing report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual

subsurface conditions revealed during construction. *The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.*

A Geotechnical Engineering Report is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should *never* be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, *but recognize that separating logs from the report can elevate risk.*

Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, *but* preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. *Be sure contractors have sufficient time* to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that

have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a *geoenviron-mental* study differ significantly from those used to perform a *geotechnical* study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated environmental problems have led to numerous project failures.* If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. *Do not rely on an environmental report prepared for someone else.*

Obtain Professional Assistance To Deal with Mold

Diverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, a number of mold prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer's study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your ASFE-Member Geotechncial Engineer for Additional Assistance

Membership in ASFE/The Best People on Earth exposes geotechnical engineers to a wide array of risk management techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you ASFE-member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733 Facsimile: 301/589-2017 e-mail: info@asfe.org www.asfe.org

Copyright 2004 by ASFE, Inc. Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with ASFE's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of ASFE, and only for purposes of scholarly research or book review. Only members of ASFE may use this document as a complement to or as an element of a geotechnical engineering report. Any other firm, individual, or other entity that so uses this document without being an ASFE member could be committing negligent or intentional (fraudulent) misrepresentation.