ADDENDUM NUMBER ONE

DUPONT PUMP STATION AND BASIN IMPROVEMENTS – PHASE 2 (Contract A) W-12-026-202

CITY OF CHATTANOOGA, TENNESSEE

The Bid Date shall be extended to Thursday, December 19, 2019 at 2:00 PM. The cutoff for questions shall be extended to December 12, 2019.

The following changes shall be made to the Contract Documents, Specifications, and Drawings:

I. CONTRACT DOCUMENT

- A copy of the sign-in sheet from the Pre-Bid meeting on November 21, 2019 is attached.
- Add attached Drawings C-17, C-18, C-19, C-20, and CD-8.
- Add attached Specification Section 13 60 13 Pre-Fabricated Restroom
- Replace Section 00 41 00 Bid Form with the attached.
- Drawing C-1: Revise Laydown Area Label "Contractor Laydown Area 60'x175"
- Drawing C-4: Revise RCP Label "12" RCP" for both stormwater pipelines located between the new catch basins and new concrete headwall.
- Add Wilo and Ebara to the list of acceptable submersible solids handling pump manufacturers. Product shall meet the detailed requirements of the specifications.
- Add Lord and Company to the list of acceptable PCSS in Section 40 90 00.
- Replace paragraph 2.03.D in Section 43 21 39 with the following paragraph:

The impeller shall be a rotodynamic semi-open, solids handling type capable of passing solids either due to internal clearances or other features to facilitate solids processing including a wear plate with groove. The wear plate to impeller clearance shall be easily adjustable without the need for disassembly of the pump or the need to add or remove shims. The impeller may include pump out vanes on the upper shroud to reduce axial thrust and minimize clogging due to debris accumulation around the mechanical seal. As an alternate, the impeller may be a rotodynamic enclosed, solids handling type, capable of passing fibrous material and three-inch (minimum) diameter solids with a Type 316 stainless steel wear ring fitted to the impeller front shroud. The impeller shall be two-plane dynamically balanced in accordance with ISO 1940-1 quality grade G2.5 standard to provide smooth, vibration free operation.

II. Q&A/COMMENTS

Note: Duplicate questions were provided by several potential bidders. While wording varied slightly, duplicates have been removed.

1. Can you provide the CAD/DWG files for the above referenced job?

Response: CAD files will be made available to the successful bidder.

2. Invitation to Bid - Please provide bid date extension for this project.

Response: The bid date has been revised.

3. Plan Sheet C-6, Note 3: Can you confirm that the 4" Gate Valve is to be Type GV400 per Spec Section 40 05 50-2.05-C-3.e.?

Response: Confirmed

4. Plan Sheet M-7: Can you confirm that the 4" Gate Valve GV-2030 is to be Type GV401 per Spec Section 40 05 50-2.05-C.3.f.? Also is this electric actuator Open/Close or modulating? I did not find this valve on the P&ID drawings.

Response: Confirmed. This valve shall have an Open/Close electric actuator as shown on I-5.

5. It was mentioned the Geotechnical Report will be included with Addendum 1. Is it possible to receive the Geotech Report on 11/26/2019? The cutoff for questions is 12/1/2019 and for most, the last working day before the question cutoff date is 11/27/2019. It is likely that more questions will arise upon receipt of the Geotech Report. Another option would be extending the question cutoff date.

Response: The Geotechnical Report prepared by CDM Smith is attached. Contractors may rely on the data presented in this report. However, reliance on any interpretations of such data are at the Contractor's sole risk. The Bid Date has been revised in Addendum No. 1.

6. Will there be any City provided equipment?

Response: No.

7. Are there any contaminated soils?

Response: Not to our knowledge; however, no specific sampling or testing has taken place.

8. How will pipelines be abandoned?

Response: Pipelines abandoned in place (not removed) will be filled with flowable fill per Specification Section 03 60 00 Grout.

9. Will the project have an inspector?

Response: Yes, the project will have a CDM Smith inspector.

10. What are the noise limitations for the project?

Response: Noise limitations are included in Section 01 13 10 Special Provisions.

11. Will this project have an escrow account?

Response: Yes, per Section 00 86 00 Escrow Agreement.

AD1-2 C05034

12. Can the project have a Geotechnical Allowance?

Response: The project does not currently have a Geotechnical Allowance but does have an allowance for materials testing.

13. The Bid Form text only refers to Bid Items 1 through 6, but includes 7 Bid Items; please advise.

Response: A corrected Bid Form is included in Addendum No. 1.

14. C-1 calls for a 60'-150' Laydown area and C-3 calls for a 60'x175'. Which one is correct?

Response: The laydown area is 60'x175'. See Addendum No. 1 revision.

15. C-4 calls for 15" RCP and C-6 calls for 12" RCP. Which one is correct?

Response: 12" RCP is the correct size. See Addendum No. 1 revision.

16. Please confirm that MH 1 has a vent and a watertight lid.

Response: Confirmed.

17. Can we close a portion of Dixie Drive (just north of the project site) for the duration of the construction project?

Response: This is considered acceptable, provided emergency access is provided and all requirements in 01 12 16 Sequence of Construction are met.

The following questions were also received. Responses are still being developed and will be provided in a separate addendum.

- 1. If we are to provide a design as part of our scope, we request the loading information. If we are to bid to the stamped set of plans provided, then we'd request a more common Micropile diameter of 9.625" x 0.545" be utilized and request the rock bond diameter to be drilled.
- 2. A detailed Micropile geometry was provided in the form of 9.75" x 0.5" piles with a full length 1.5" GR 75 bar and topped with 10"x10"x1" plates with a 7' rock bond length for all piles. No mention of a hole diameter required per their design is provided.
- 3. The specifications say that we have to provide a stamped set of drawings and calculation package for the design of the piles. No loading information (compression, tension, nor lateral) was provided for the piles to be designed to.
- Installation of Manhole MH-A. (Maximum bypass flow = 30 mgd),
 Can you please confirm that 30 MGD is the MANDATORY bypass pumping design for the 30" SS line?
- 5. Installation of 30" force main aerial crossing and associated connections. Bypass pumping is not required, but a 30" temporary HDPE bypass connection may be necessary depending on the amount of time the 30" force main is to be out of service.

- 1. What is the TDH' or PSI on the existing 30" FM
- 2. What MGD flows through this 30" FM?
- 3. Can the flows from 30" FM be discharged into existing 42" gravity line?
- 6. Installation of 42" Gravity Sewer Line West of the proposed aerial crossing will conflict with existing 18" Gravity Sewer. (Maximum bypass flow = 4 mgd)
 - 1. Can you please confirm that 4 MGD is the MANDATORY bypass pumping design for the 18" SS line?
- 7. Installation of Manhole M-7 (replacement of S11K005). (Maximum bypass flow = 4 mgd) 1. Can you please confirm that 4 MGD is the MANDATORY bypass pumping design for the 15" SS line?
- 8. Reference drawing C-6. Concerning the tie in of the new 30" FM-DI into the existing 30" FM, what are the dry weather and wet weather flows in the existing 30" FM? Also, can the flows be controlled without the use of bypass pumps to make this tie in? When the 30" line is cut to make the tie in, how much sewer can be expected to flow into the tie in area?

December 3, 2019	Justin C Holland, Administrator City of Chattanooga

AD1-4 C05034

PRE-BID CONFERENCE MEETING MINUTES

Dupont Pump Station and Basin Improvements – Phase 2 (Contract A) CONTRACT #W-12-026-202

November 21, 2019

Training Facility, Moccasin Bend Wastewater Treatment Plant

1. Introductions

- a. Owner City of Chattanooga
- b. Program Manager Jacobs
- c. Engineer CDM Smith
- d. TDEC State Revolving Fund
- e. Southwest Tennessee Development District

2. Project Scope/Description

- a. The Project location is on Dixie Drive in Rivermont Park and immediately south of the Champions Tennis Club. The Project generally consists of constructing a diversion structure, 22 million gallon per day wet-weather pump station, electrical building, diesel generator, odor control systems for the new structures, yard piping, and related work.
- b. Via addendum, a precast restroom and floating dock repairs will be added to the project.

3. Pre-Bid Conference Agenda

4. Bid Documents

- a. Refer to Section 00 21 13 Instructions to Bidders
- b. Purchase Bids from 8:00 a.m. to 4:30 p.m., Monday through Friday, at the City of Chattanooga Purchasing Department, 101 East 11th Street, Suite G13, Chattanooga, TN 37402, phone (423) 643-7230, fax (423) 643-7244.
- c. Cost of Contract Documents is \$100 per set. No part of the purchase will be refunded for any reason.
- d. Bid Bond in the amount of 5% of Bid with Surety licensed to do business in TN and listed in U.S. Treasury Circular 570.
- e. No Bid withdrawn within 120 calendar days of receipt of Bids.

5. Qualifications

- a. Refer to Section 00 21 13 Instructions to Bidders, and Section 00 45 13 Statement of Bidder's Qualifications
 - i. Bidder shall maintain permanent place of business
 - ii. Must be licensed by State of Tennessee to perform work under contract
 - iii. Bidder shall demonstrate adequate construction experience and sufficient equipment resources to properly perform work.
 - iv. Owner reserves the right to reject any bid if bidder fails to satisfy qualifications.

6. Bidding Requirements

- a. Bid Bond in the amount of 5% of Bid with Surety licensed to do business in TN and listed in U.S. Treasury Circular 570.
- b. No Bid withdrawn within 120 calendar days of receipt of Bids.

c. Section 00 45 77 – Contractor's Identification must be completed, with one copy attached to the outside of the bid package, and one copy inside the bid package.

7. Bidder Questions and Addenda

- a. Use Section 00 21 14 Request for Bidder Information. Submit by fax, email or mail to City of Chattanooga Purchasing Department. bidinfo@chattanooga.gov.
- b. Questions received less than ten (10) days (December 1st, 2019) prior to the date for opening the Bids may not be answered. All questions about the meaning or intent of the Bidding Documents are to be submitted to Owner in writing. Questions and other inquiries shall be submitted to the City of Chattanooga Purchasing Department.
- c. Required to purchase set of plans and specifications to get on the plan holders list. Only bidders on plan holders list will receive addenda; which must be acknowledged in the Bid Form.

8. Bid Opening

- a. Date/Time December 10th, 2019 at 2pm
- b. Location City of Chattanooga Purchasing Department, 101 East 11th Street, Suite G13, Chattanooga, TN 37402

9. Contract Completion Time

- a. Substantial Completion within 300 Calendar Days of Notice to Proceed (Section 00 52 00 will be corrected via addendum to match Bid Advertisement)
- b. Final Completion within 330 calendar days of Notice to Proceed

10. Liquidated Damages

 \$1,000 for each day after Substantial Completion if work is deemed to not be substantially complete, and \$1,000 for each day after Final Completion if Contractor has not completed the work.

11. Project Specific Requirements

- a. Refer to Section 01 12 16 for Construction Constraints and Proposed Sequence of Construction.
- b. Landscape plan development and landscaping to be provided under Bid Allowance 5.
- c. Contractor to be aware that the Dupont Pump Station and Basin Improvements Phase 2 (Contract B) project will be taking place at the same time.

12. Site Access

- a. All work to be completed shall be on the City of Chattanooga's property or easements.
- b. If needed, the Contractor is responsible for acquiring all required right of entry and temporary construction easements on private properties in order to access existing sewers and preform the required work.
- c. Emergency access shall always be maintained to the boat ramp and Champions Tennis Club.
- d. Golf cart shuttle service shall be provided for weekend tournaments (see additional requirements in Section 01 12 16)

13. Safety

a. Refer to Section 00 72 00 and 00 73 00 General Conditions

14. Work Hours

a. Work Hour Restrictions – Work hours shall be 7:00 a.m. to 6:00 p.m. Monday through Friday unless the City has more specific restrictions.

15. DAVIS-BACON Act

a. This project is being funded by a State Revolving Fund loan on or after 2010 EPA Fiscal Year. The loan recipient must be in compliance with all applicable requirements of the Davis-Bacon Act. Gina Ogle – Administrative Assistant, Southeast Tennessee Development District gogle@sedev.org

16. Allowances

a. The Contractor shall include in the Bid Total all allowances stated in the Contract Documents. These allowances shall cover the net cost of the services provided.

17. Other Items

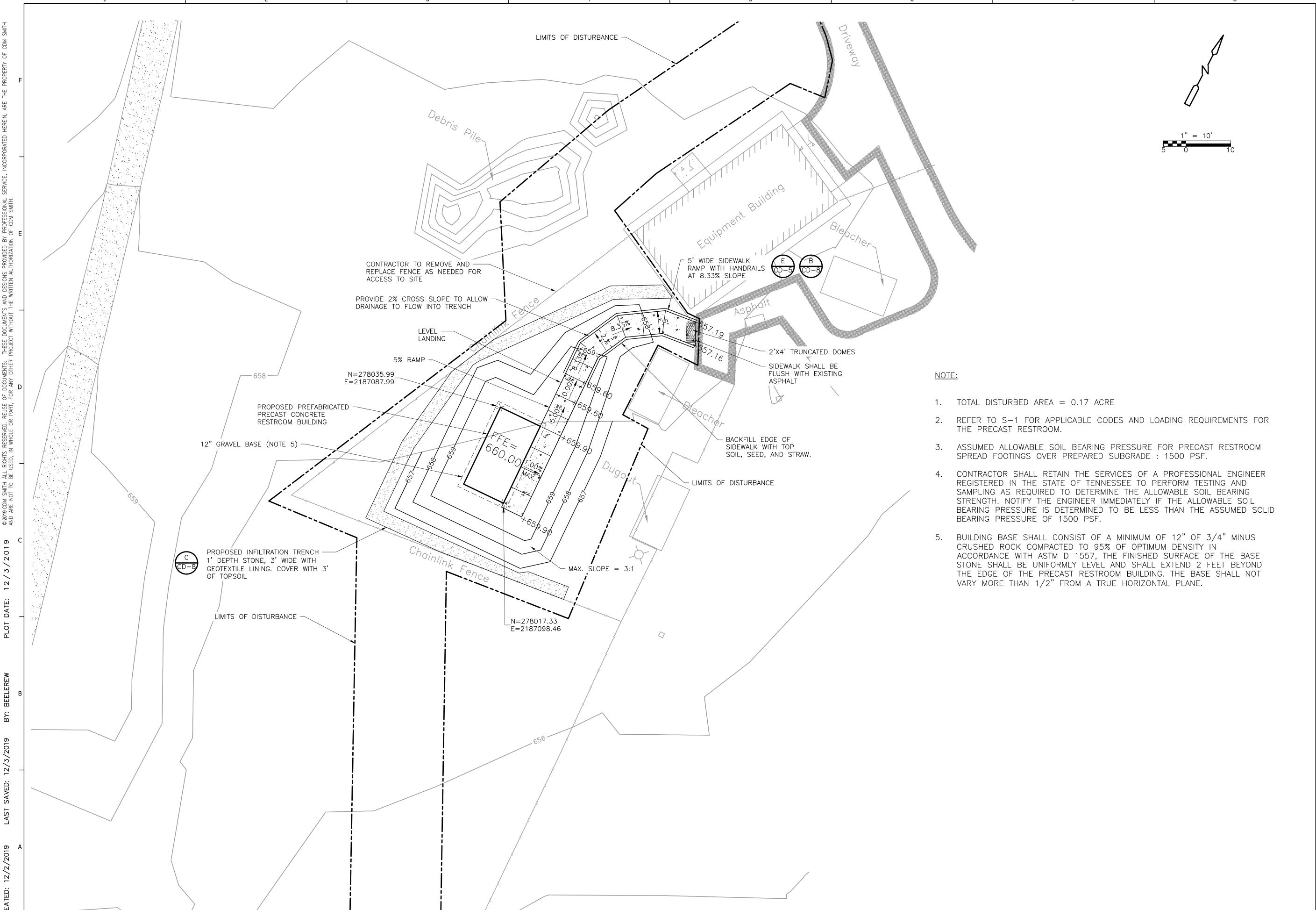
- a. It is the Contractors responsibility to repair any existing utilities that are damaged during construction.
- b. The items discussed here today are not intended to be all-inclusive. It is the Contractor's responsibility to review the Contract Documents and comply with all provisions.

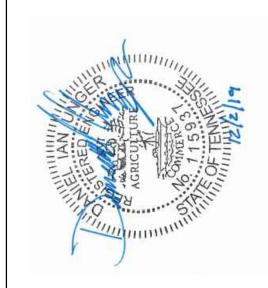
18. Questions

All questions included in Addendum No. 1.

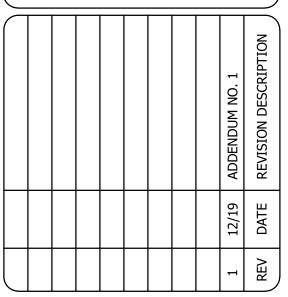
SIGN IN SHEET

PRE-BID CONFERENCE


Dupont Pump Station and Basin Improvements - Phase 2 (Contract A)


CONTRACT #W-12-026-202

November 21, 2019 Training Facility, Moccasin Bend Wastewater Treatment Plant

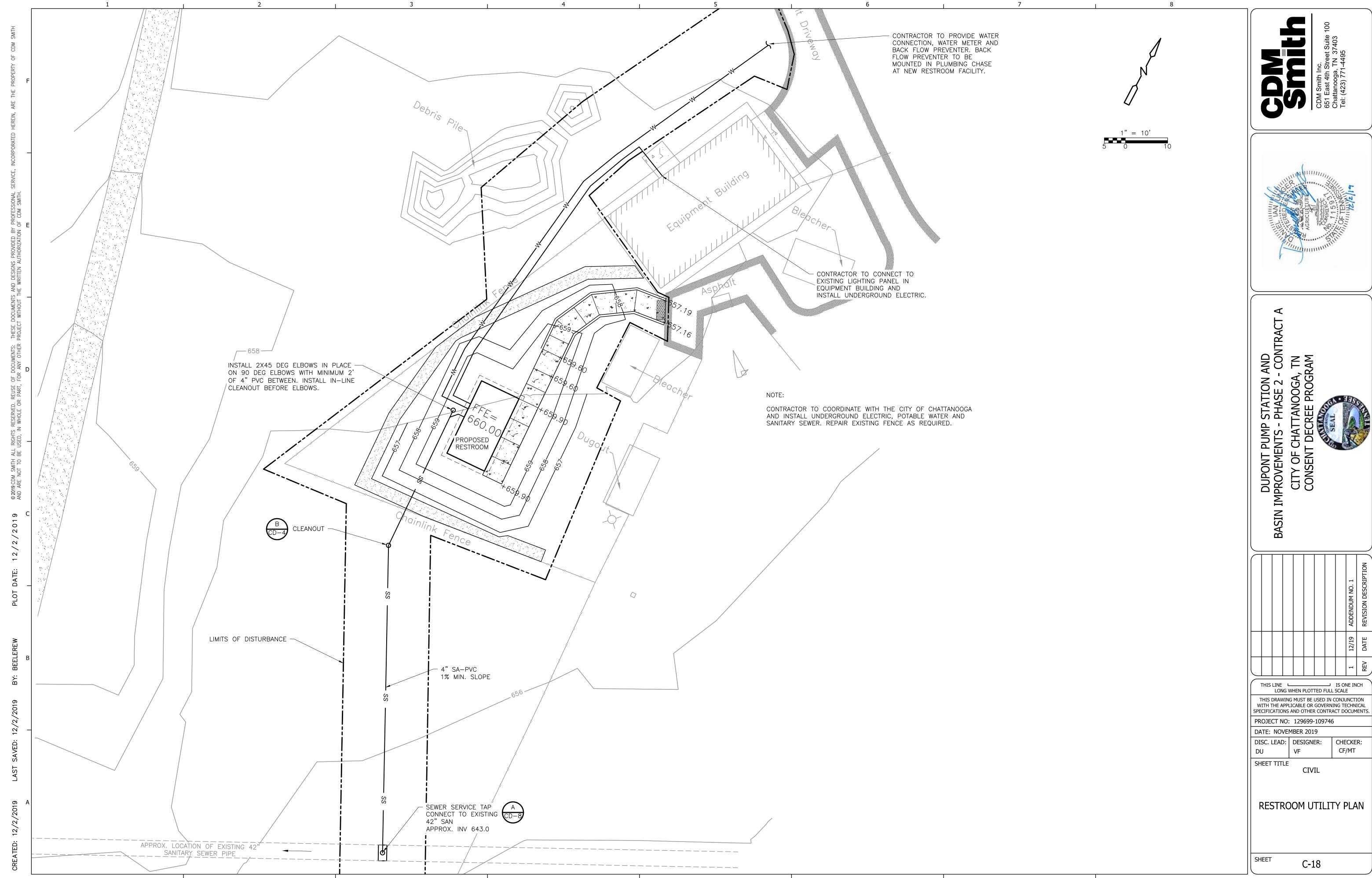

NAME	COMPANY	E-Mail Address
DANIEL UNGER	CDM SMITH	ungerei@comsmith.com
TANNER GORE	ECO-TECH	toore@ eco-tech-net
MARK DICKSON	CROUDER CONSTRUCTION	Mdickson@crowderusa.com
Can Maynerd	Subelt Pump Solutions	cain maynerd @ sunbeltrentals. com
Chris Hobgood	Ty Be Company	Chobgood@southcon.us
Mike MARTIN	Nixon Power	MMARTIN & NIXONDOWER. COM
DEMNY BRESTLE	JACOBS .	denny brestlows seeds. com
Zach Humphrey	Reeves Yang	Thumphray @ reeves young.com
Craig Haney	Brang & Whitemore	craiges rann-whitemore, con
Cuts Deukind	NABCO cleenic	czew Kins @ nabcoelectric.com
Robbie Beaden	Tri State Electric	robbie b@fristateec.com
Todd Thomasson	Tristate Electric	todit @ tristateec.com
Jimmy Spence	City	ispence a challshoogy, gor
HANK CRAIG	A CME	heraig@acmeindustrial piping
Jace Choffin	J. Comby Construction	
Taner Dodd	WBCCI	thould a NBECI. CON
BOUNTE MUMPONER DO	Entropy Coating Solution	BINUMPONER CHATTAMOCH. GOV
BOUNTE MUMPONER DO	N GOC	BINUMPOWER PCHATTALLOCCH. GOV
DEBOIC TALLEY	OUC	DTAUGY OCHANANOVA GOV
DEMNIS MAKALE	Cos	DMALOUGE CHATTANOWA GOV
KADIR AMEBN		KAMEEN @ CHATTAN OCA, GV
BRUCE SPANNOW	WBCCI	BSPANNONE WBCCI.COM
0	0	valta las al 11

RANDY TAYLOR CITY Voltay for @ chart towning of gov Smith Radis two City Kannen a charttang gov Robert Cachour Adrew Electric Tealhour & ad man electric. Gm

DUPONT PUMP STATION AND
N IMPROVEMENTS - PHASE 2 - CONTRACT
CITY OF CHATTANOOGA, TN
CONSENT DECREE PROGRAM

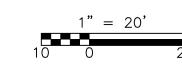
THIS LINE LONG WHEN PLOTTED FULL SCALE THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS.

PROJECT NO: 129699-109746 DATE: NOVEMBER 2019

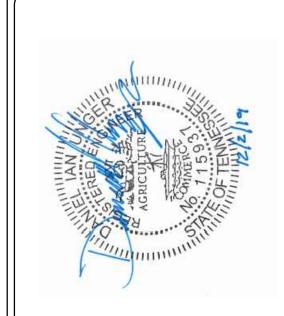

DISC. LEAD: DESIGNER: CHECKER: CF/MT SHEET TITLE CIVIL

RESTROOM SITE LAYOUT AND GRADING PLAN

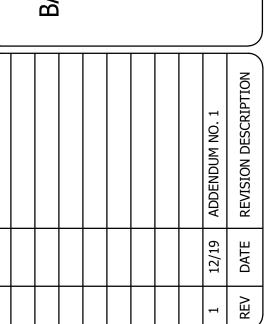
SHEET


C-17

ISSUED FOR BID

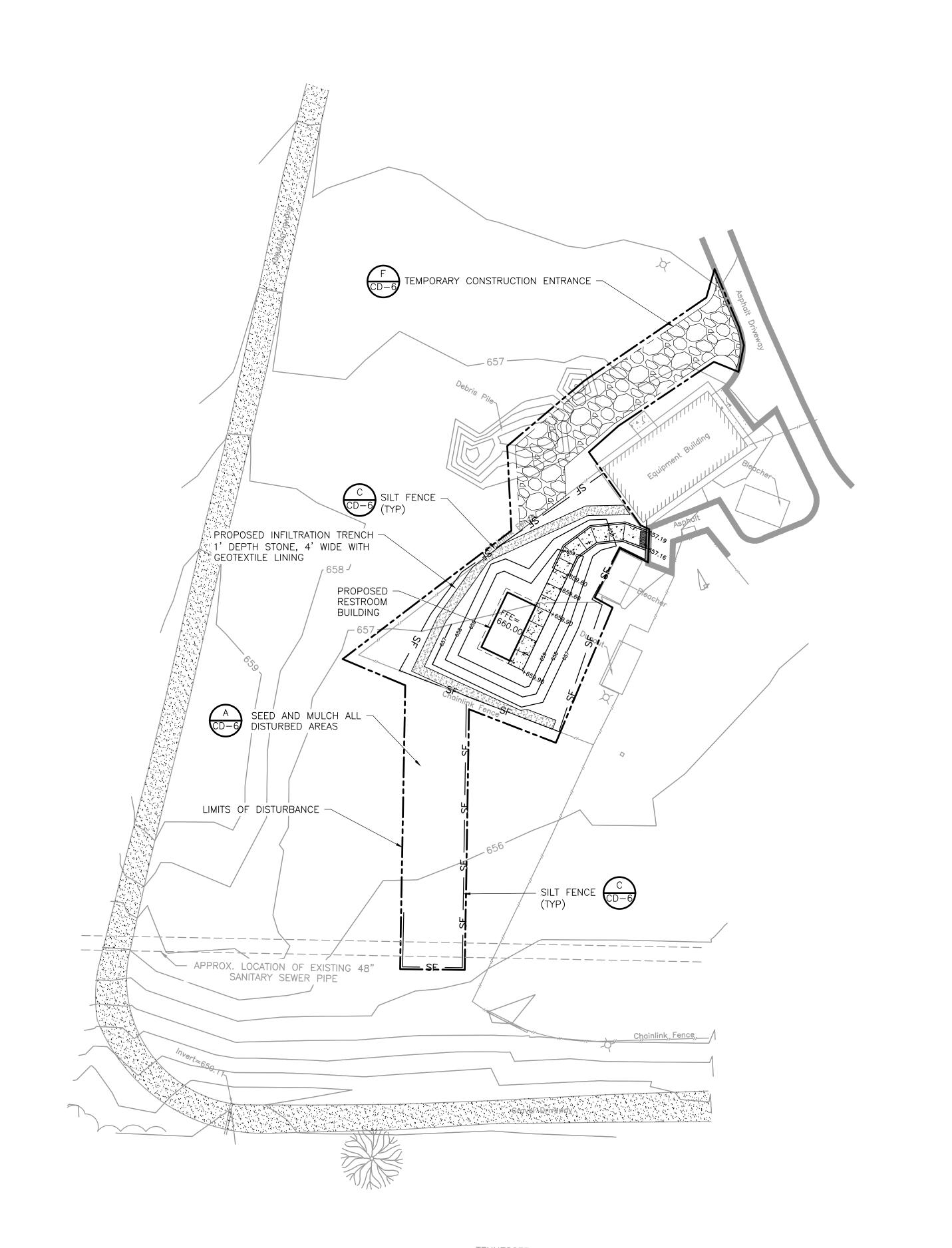


ISSUED FOR BID

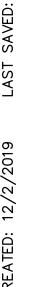


THIS LINE IS ONE INCH THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS.

PROJECT NO: 129699-109746 DATE: NOVEMBER 2019


DISC. LEAD: DESIGNER: CHECKER: CF/MT SHEET TITLE

> RESTROOM EROSION CONTROL PLAN


CIVIL

C-19

ISSUED FOR BID

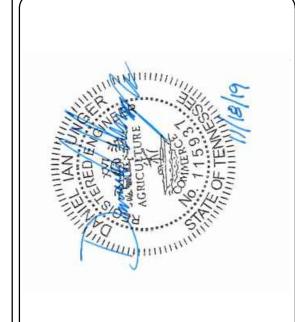
TENNESSEE RIVER

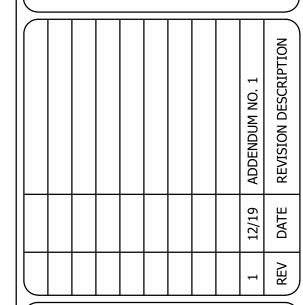
OF ANY DISCREPANCIES.

REPLACE EXISTING 8'x8' CONCRETE FLOATS

DRAWINGS AND SHALL NOTIFY THE ENGINEER

AND ASSOCIATED TIMBER (TYP OF 8). CONTRACTOR SHALL FIELD VERIFY ALL


DIMENSIONS PRIOR TO SUBMITTING SHOP


CONCRETE FLOATING DOCK MODIFICATIONS

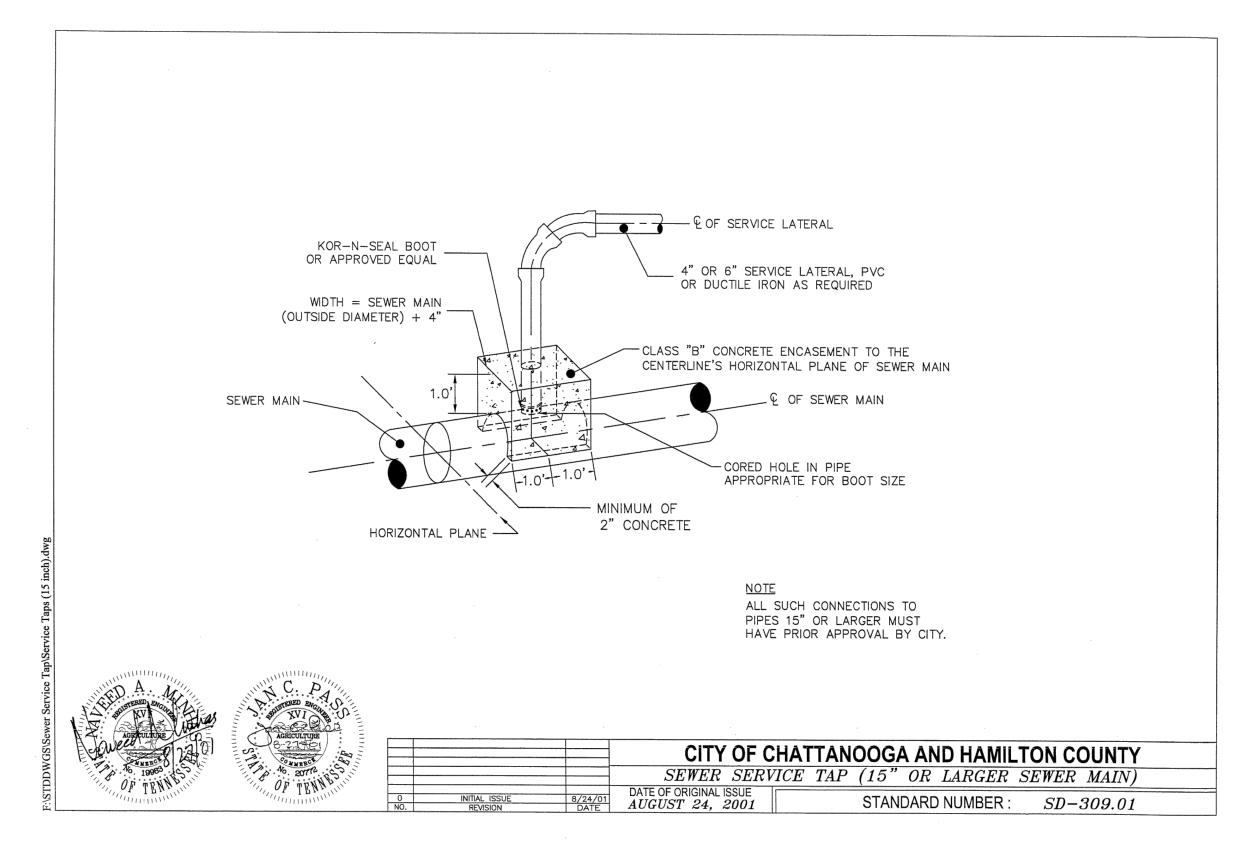
NOTES:

- 1. CONTRACTOR SHALL FURNISH ALL TOOLS, EQUIPMENT, MATERIALS, AND SUPPLIES AND SHALL PERFORM ALL LABOR, SUPERVISION, FABRICATION, ASSEMBLY, AND DELIVERY OF A COMPLETE CONCRETE FLOAT SYSTEM.
- 2. THE REPLACEMENT DOCK SYSTEM SHALL CONSIST OF MODULAR SECTIONS MATCHING THE DIMENSIONS OF THE EXISTING SYSTEM.
- 3. FLOATS SHALL BE CAPABLE OF SUPPORTING A LIVE LOAD OF 50 POUNDS PER SQUARE INCH WITH A MINIMUM FREEBOARD OF 8".
- 4. WALKING SURFACE OF CONCRETE FLOATS SHALL BE LEVEL AND FLUSH WITH RESPECT TO ADJACENT FLOATS.
- FLOATS SHALL BE DESIGNED TO FLOAT LEVEL UNDER DEAD LOAD.
- FLOAT AND ANCHORAGE SYSTEM SHALL BE DESIGNED FOR THE FOLLOWING LOAD CASES:
- 6.1. WIND PRESSURE 15 PSF (77 MPH AT 33 FEET STANDARD ELEVATION, EXPOSURE C, PER ASCE 7-93) ACTING ON THE PROJECT AREA.
- MINIMUM CURRENT PRESSURE OF 0.6 PSF. 6.3. VERTICAL WAVE LOADS FROM A 1' HIGH 1.5 SECOND PERIOD WAVE.
- 7. PRIOR TO FABRICATION OR CONSTRUCTION, THE CONTRACTOR SHALL FURNISH SHOP DRAWINGS AND CALCULATIONS. CALCULATIONS SHALL BE PERFORMED BY A REGISTERED PROFESSIONAL ENGINEER (STATE OF TENNESSEE). SHOP DRAWINGS SHALL INCLUDE THE REPLACEMENT DOCK SYSTEM, LAYOUT OR MOORING/ACNHORING SYSTEM, DETAILS OF ALL CONNECTIONS, AND ALL OTHER DETAILS NECESSARY TO THE CONSTRUCTION OF THE REPLACEMENT FLOATING DOCK SYSTEM.
- 8. FLOAT MANUFACTURER SHALL HAVE A MINIMUM OF 10 YEARS EXPERIENCE IN THE DESIGN AND MANUFACTURING OF CONCRETE FLOATS.
- 9. FLOATS SHALL BE CAST MONOLITHICALLY IN A SINGLE POUR.
- 10. PRIOR TO THE MANUFACTURING OF FLOATS, THE CONCRETE MIX DESIGN SHALL BE APPROVED. THE CONCRETE MIX SHALL CONTAIN TYPE I OR TYPE II MODIFIED, LOW ALKALI PORTLAND CEMENT. CONCRETE FOR THE TOP SURFACE SHALL CONTAIN POLYPROPYLENE FIBROUS REINFORCEMENT. CONCRETE SHALL HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 4,000 PSI PER ASTM C-94. COARSE AND FINE AGGREGATES SHALL CONFORM TO ASTM C-33-86M ASTM C-330 LIGHTWEIGHT AGGREGATES IN STRUCTURAL CONCRETE. ALL CONCRETE SHALL BE AIR-ENTRAINED FROM 5 TO 8 PERCENT AND SHALL BE TESTED IN ACCORDANCE WITH ASTM C-138, C-173, OR C-231. WATER CEMENT RATIO SHALL NOT EXCEED 0.45. SLUMP RANGE SHALL BE 3 TO 7 INCHES WHEN TESTED IN ACCORDANCE WITH ASTM C-143-78. THE CONCRETE UNIT WEIGHT SHALL NOT EXCEED 120 PCF.
- 11. GALVANIZED WELDED WIRE USED AS CONCRETE REINFORCEMENT SHALL BE A MINIMUM SIZE OF 2"X2" - 14/14 AND SHALL MEET ASTM A-185. REINFORCING SHALL BE GRADE 60, CONFIRM TO ASTM 615, AND SHALL BE EPOXY COATED IN ACCORDANCE WITH ASTM A775.
- 12. THE FLOATS SHALL CONTAIN AND EXPANDED POLYSTYRENE CORE (TYPE I) AND SHALL CONFORM TO ASTM C-578.
- 13. THE FLOAT DECK SURFACE SHALL BE TOWEL FINISHED AND SHALL HAVE A
- SLIP-RESISTANT FINISH APPLIED. 14. REPLACEMENT TIMBER SHALL BE PRESSURE TREATED WITH CCA, ACQ, OR ACZA TO 0.6 PCF RETENTION.
- 15. ALL HARDWARE SHALL BE 316 SS AND ALL STRUCTURAL STEEL REQUIRED FOR REPLACEMENT FLOAT INSTALLATION SHALL BE HOT DIPPED GALVANIZED.

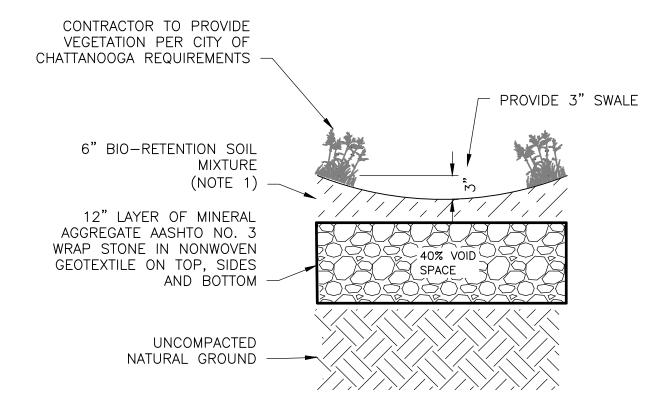
LONG WHEN PLOTTED FULL SCALE THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS.

PROJECT NO: 129699-109746 DATE: NOVEMBER 2019

DISC. LEAD: DESIGNER:

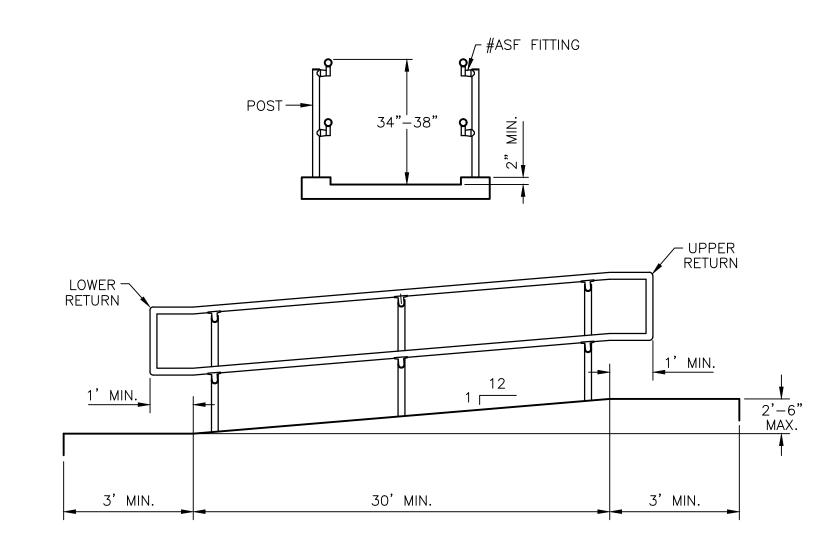

SHEET TITLE

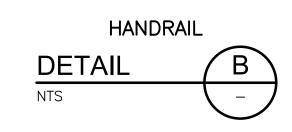
DOCK **MODIFICATION DETAILS**

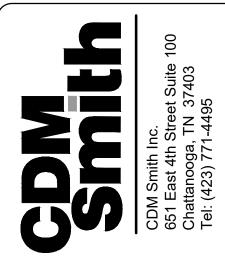

C-20

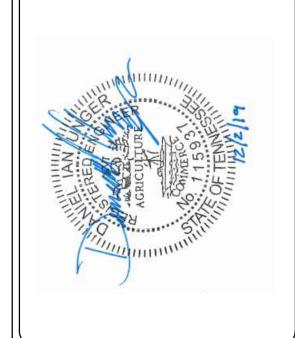
CF/MT

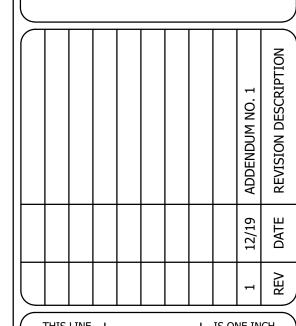
ISSUED FOR BID




1. BIO-RETENTION SOIL MIXTURE SHALL BE 85% WASHED, COARSE SAND; 10% FINES; 5% ORGANICS FROM PINE BARK.


NOTE:


 REFER TO CITY OF CHATTANOOGA RAIN RESOURCE GUIDE FOR MORE INFORMATION. INFILTRATION TRENCH SECTION



DUPONT PUMP STATION AND
SASIN IMPROVEMENTS - PHASE 2 - CONTRACT A
CITY OF CHATTANOOGA, TN
CONSENT DECREE PROGRAM

THIS LINE LONG WHEN PLOTTED FULL SCALE

THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE APPLICABLE OR GOVERNING TECHNICAL SPECIFICATIONS AND OTHER CONTRACT DOCUMENTS.

PROJECT NO: 129699-109746

DATE: NOVEMBER 2019

DISC. LEAD: DESIGNER: CHECKER:
DU VF CF/MT

SHEET TITLE

CIVIL

RESTROOM CIVIL DETAILS

SHEET CD-8

ISSUED FOR BID

Pre-Fabricated Restroom

PART 1 GENERAL

1.01 SCOPE:

A. Construction and onsite placement of a prefabricated precast concrete restroom building.

1.02 PERFORMANCE REQUIREMENTS

A. Manufacturer

- 1. Manufacturer shall be an NPCA Certified Plant or equal.
- 2. Manufacturer shall have a minimum of 10 years' experience producing, assembling and finishing buildings.
- 3. Acceptable Manufacturers include but are not limited to:
 - Huffcutt Concrete, Inc.,4154 123rd Street, Chippewa Falls, WI 54729
 Phone (715) 723-7446, www.huffcutt.com
 - b. CXT Concrete Buildings,901 N. Highway 77, Hillsboro, TX 76645 Phone (800) 696-5766 x3480, www.cxtinc.com
 - c. Carr Concrete 362 Waverly Road, Williamstown, WV 26187 Phone (304) 464-4441, Fax (304) 464-4013, www.carrconcrete.com
 - d. Or Equal.

B. Structural

1. Refer to Drawing S-1 for all applicable Codes and Design Loads.

C. Design

1. Building shall be designed to meet ADA requirements.

D. Concrete

- 1. Plants for mixing concrete shall conform to ASTM C94.
- Cement conforming to ASTM C150 or C595.
- Concrete mixes proportioned using ACI 211.1
- 4. Coarse and Fine Aggregates conform to ASTM C33.
- Mixing water conforms to ASTM C1602.
- 6. Chemical Admixtures used in concrete conform to ASTM C260(Air Entraining), C494 (Mid and High range Water Reducers), C979 (Color Pigments).
- 7. Compressive strength of Concrete minimum 5000psi at 28 days.

- 8. Maximum water/cement ratio of .45.
- 9. Reinforcing Bars- Deformed Billet Steel meets ASTM 615.
- 10. Steel Bar mats and Welded Wire Reinforcement meets ASTM A184, A185, A497.
- 11. Cold Weather Concrete
 - a. Cold weather concrete placement will be in accordance with ACI 306.
 - b. Concrete will not be placed if ambient temperature is expected to be below 35 degrees Fahrenheit during the curing period unless heat is readily available to maintain the surface temperature of the concrete at least 45 degrees Fahrenheit.
 - c. Materials containing frost or lumps of frozen materials will not be used.

12. Hot Weather Concrete

The temperature of the concrete will not exceed 90 degrees at the time of placement. When the ambient temperature reaches 90 degrees the concrete will be protected with moist covering.

1.03 SUBMITTALS

A. Manufacturer shall provide shop drawings and engineering.

1.04 QUALITY ASSURANCE

- A. Production shall be done in accordance with approved submittals.
- B. Pre-pour and post pour checks shall be completed to insure proper dimensioning, component placement, rebar placement, and architectural finish.
- C. Concrete batches shall be tested daily for:
 - 1. Aggregate moisture
 - 2. Air entrainment
 - Temperature
- D. Yield test and compressive strength cylinders shall be taken at a minimum weekly.

PART 2 PRODUCTS

2.01 MATERIALS

A. Doors and Frames

1. Shall comply with the Steel Door Institute "Recommended Specifications for "Standard Steel Doors and Frames" (SDI-100) and as herein specified. The doors shall be insulated 18 gauge galvanized metal with 16 gauge galvanized

Pre-Fabricated Restroom

frames. Doors and frames shall include one coat of rust inhibitive primer and two finish coats of enamel paint.

B. Door Hardware

- Door Closer: Norton CLP7500T or equal.
- 2. Sweep: Reese 962C Anodized Clear Aluminum, Door Sweep Weather strip Nylon Brush Insert or equal.
- 3. Hinges: 3 Hinges. Ives 3-BB-I-HW-4.5x4.5-US26D-NRP or equal.
- 4. Lockset: Key-in-lever cylindrical locksets shall be Falcon T Series or equal and meet the following requirements:
 - a. All locks shall meet the new ANSI/BHMA A156.2, Series 4000, Grade 1 for key-in-lever locksets.
 - b. Locksets shall be UL Listed (3 hour A Label).
 - c. Locksets shall be provided standard with Pressure Release feature. When outside lever is locked, it is not rigid but will move freely without operating the latch bolt.
 - d. Lever trim shall have individual heavy-duty compression springs behind rose for lever return and to prevent lever sag. Trim shall be through-bolted with two (2) 10-32 screws coated with thread sealant to provide strength and resistance to loosening. Inner and outer trim shall "bottom out" to prevent door collapse. Roses shall be minimum of 3-1/2" diameter.
 - e. All lever designs shall be solid and meet the federal ADA and state disability requirements. Inside levers shall be attached by Allen-head set screw to prevent tampering or vandalism.
 - f. Locksets shall adjust to fit door thickness from 1-3/4" to 2-1/8".
 - g. All Locksets shall be non-handed and not require field disassembly for rehandling.
 - h. Preparation for door must be non-handed.
 - i. Acceptable manufacturer: Falcon Lock T571PD DAN 626 98535 5164 or equal.

C. Plumbing

- 1. Stools
 - Porcelain wall mounted with flush valve.
- Urinals
 - a. Porcelain wall mounted with flush valve.
- Lavatory
 - a. Porcelain wall mounted with faucet.
- 4. Hot Water Heater
 - a. One (1) Electric Instantaneous minimum requirement- 3.2 kW, 110/115V
 1 Phase 60 Hz with 1.5 GPM .

- 5. Piping
 - a. Drain and vent piping shall be schedule 40 PVC.
 - b. Potable water piping shall be PEX tubing,
- 6. Hose Bibb
 - a. Hose Bibb to be installed in plumbing chase.
- 7. ADA Drinking Fountain with Bottle Refiller

D. Electrical

- 1. Interior surface mounted fixtures and conduit.
 - a. Kennel vandal proof light fixtures or equal.
 - b. Motion sensors.
 - c. GFI duplex outlets.
 - d. Single pole switches.
 - e. Water heater connection.
 - f. 12 circuit breaker panel.
 - g. Metallic conduit
- 2. Wall Chase Mounted Electric Hearters
 - a. Fan forced upflow, ETL listed, factory rated at 120V, 208V and dual field rate 208V/240V.
- 3. Restroom Electrical Wall Heater
 - a. Fan forced up flow, UL listed
 - b. Factory rated 208V
 - c. Dual field rate 208V/240V
- 4. Exterior
 - a. 100 Wall HPS wall pack with photo eye control or equal.
- 5. Electric Wall Mounted Hand Dryers- Xlerator Model No. XL-SB
- 6. Exhaust Fan System
- E. Floor Vents
 - 1. Shall be 16" x 8" made from cast aluminum alloy louvered, with rodent proof screen riveted in.
- F. Toilet Paper Dispensers
- G. Frame shall be made from 18 gauge, type 304 stainless steel. Tube shall be 20 gauge, 11/8" diameter stainless steel equipped with a padlock. Toilet paper dispenser shall hold 3 rolls of paper. Acceptable manufacturer: Royce Rolls Ringer Company TP-3 or equal.

Pre-Fabricated Restroom

H. Grab Bars

1. Grab bars shall be 1½" O.D. heavy duty stainless steel with concealed mounting. Tubing shall be 18 gauge seamless construction with exposed surfaces in architectural satin finish. Flanges shall be 13 gauge stainless steel and escutcheons 22 gauge. Each ADA accessible stall shall have (1) 18" vertical, (1) 42" horizontal, and (1) 36" horizontal grab bar. Acceptable manufacturer: Bradley 8120-001 or equal.

Mirrors

1. Mirrors shall be durable, sturdy, type 304 stainless steel 18 gauge frame w/satin finish. The mirror shall be A float glass with electro-copper-plated silver back or polished stainless steel. Acceptable manufacturer: Royce Rolls Ringer Company TM1836 or equal.

J. Soap Dispenser

1. Soap dispenser shall be stainless steel. Acceptable manufacturer: Royce Rolls Ringer Company LSV or equal.

K. Paper Towel and Bin

1. Paper towel and bin shall be stainless steel. Acceptable manufacturer: Royce Rolls Ringer Company L-SYSTEM or equal.

L. Sealers

1. Floor shall be sealed using a deep penetrating, high alkali resistant, low volatility product. Acceptable manufacturer: TK Products 290 or equal.

M. Caulks and Grout

- 1. All joints between precast panels shall be caulked using a durable, flexible polyurethane sealant. Acceptable manufacturer: Tremco Dymonic FC or equal.
- 2. Grouts shall comply with ASTM C-387 and ASTM C-928 R2 and contain no calcium chloride or other added chlorides that contribute to reinforcement steel corrosion. Grout shall not contain any gypsum-based components.
- N. Fold Down Changing Station

2.02 FINISHES

A. Interior

1. Smooth trowel finish.

Pre-Fabricated Restroom

B. Exterior

- 1. Wall panels shall be Ashlar Stone or equal on bottom 3' with Weathered Tongue & Groove or equal on top.
- 2. Roof shall be simulated cedar shake appearance.

C. Paint

1. Interior

a. Wall panels shall be primed with premium quality water based acrylic multipurpose bonding primer moisture and alkali resistant up to 13.0 pH. ICI Paints or equal. Finish coat shall be high performance acrylic semigloss enamel. Acceptable manufacturer: Devoe High Performance Devflex Coating or equal.

2. Exterior

- a. Roof shall be covered with a quality 100% acrylic satin paint. Acceptable manufacturer: Hallman Lindsay Weatherguard 100% Acrylic Satin 172 or equal.
- b. Wall panels shall be covered with a quality concrete stain. Acceptable manufacturer: H&C Concrete Stain Water Based or equal.

3. Doors

4. Metal surfaces both interior and exterior shall be covered using a high performance 100% acrylic satin enamel. Acceptable manufacturer: Hallman Lindsay Duratech 100% Acrylic Satin Enamel or equal.

PART 3 EXECUTION

3.01 INSTALLATION

A. Placement:

- 1. Building should be placed to accommodate ADA requirements for access.
- 2. Delivery and setting at the site and access to the site require clearance for a truck carrying pre-fabricated building and a crane. The access area must have a minimum height of 14' 6' and a minimum width of 14'. It must also be able to accommodate a 78' vehicle and its increased turning radius. The site must be able to have both the crane and the truck carrying the pre-fabricated building in it at the same time.

B. Excavation

1. Finished floor height shall be 6 inches above finished grade considering surrounding elevations, ADA accessibility, rain water runoff, and other site specific criteria.

END OF SECTION

Bid Form

DUPONT PUMP STATION AND BASIN IMPROVEMENTS – PHASE 2 (CONTRACT A) CONTRACT NUMBER W-12-026-202

ARTICLE 1 – BID RECIPIENT

1.01 This Bid is submitted to:

City of Chattanooga, Tennessee Purchasing Department 101 E. 11th Street, Suite G13 Chattanooga, TN 37402

1.02 The undersigned Bidder proposes and agrees, if this Bid is accepted, to enter into an Agreement with Owner in the form included in the Bidding Documents to perform all Work as specified or indicated in the Bidding Documents for the prices and within the times indicated in this Bid and in accordance with the other terms and conditions of the Bidding Documents.

ARTICLE 2 – BIDDER'S ACKNOWLEDGEMENTS

2.01 Bidder accepts all of the terms and conditions of the Instructions to Bidders, including without limitation those dealing with the disposition of Bid security. This Bid will remain subject to acceptance for period of time after the Bid opening as stated in the Advertisement for Bids, or for such longer period of time that Bidder may agree to in writing upon request of Owner.

ARTICLE 3 – BIDDER'S REPRESENTATIONS

- 3.01 In submitting this Bid, Bidder represents that:
 - A. Bidder has examined and carefully studied the Bidding Documents, the other related data identified in the Bidding Documents, and the following Addenda, receipt of which is hereby acknowledged.

Addendum No.	Addendum Date

- B. Bidder has visited the Site and become familiar with and is satisfied as to the general, local and Site conditions that may affect cost, progress, and performance of the Work.
- C. Bidder is familiar with and is satisfied as to all federal, state and local Laws and Regulations that may affect cost, progress and performance of the Work.
- D. Bidder has carefully studied all: (1) reports of explorations and tests of subsurface conditions at or contiguous to the Site and all drawings of physical conditions relating to existing surface or subsurface structures at the Site (except Underground Facilities)

that have been identified in SC-4.02 as containing reliable "technical data," and (2) reports and drawings of Hazardous Environmental Conditions, if any, at the Site that have been identified in SC-4.06 as containing reliable "technical data."

- E. Bidder has considered the information known to Bidder; information commonly known to contractors doing business in the locality of the Site; information and observations obtained from visits to the Site; the Bidding Documents; and the Site-related reports and drawings identified in the Bidding Documents, with respect to the effect of such information, observations, and documents on (1) the cost, progress, and performance of the Work; (2) the means, methods, techniques, sequences, and procedures of construction to be employed by Bidder, including applying the specific means, methods, techniques, sequences, and procedures of construction expressly required by the Bidding Documents; and (3) Bidder's safety precautions and programs.
- F. Based on the information and observations referred to in Paragraph 3.01.E above, Bidder does not consider that further examinations, investigations, explorations, tests, studies, or data are necessary for the determination of this Bid for performance of the Work at the price(s) bid and within the times required, and in accordance with the other terms and conditions of the Bidding Documents.
- G. Bidder is aware of the general nature of work to be performed by Owner and others at the Site that relates to the Work as indicated in the Bidding Documents.
- H. Bidder has given Engineer written notice of all conflicts, errors, ambiguities, or discrepancies that Bidder has discovered in the Bidding Documents, and the written resolution thereof by Engineer is acceptable to Bidder.
- The Bidding Documents are generally sufficient to indicate and convey understanding of all terms and conditions for the performance of the Work for which this Bid is submitted.
- J. Where this Bid Form contains the provision for a bid based on a lump sum price, the Bidder shall be responsible for having prepared its own estimate of the quantities necessary for the satisfactory completion of the Work specified in these Contract Documents and for having based the lump sum price bid on its estimate of quantities.

ARTICLE 4 - BIDDER'S CERTIFICATION

4.01 Bidder certifies that:

- A. This Bid is genuine and not made in the interest of or on behalf of any undisclosed individual or entity and is not submitted in conformity with any collusive agreement or rules of any group, association, organization, or corporation;
- B. Bidder has not directly or indirectly induced or solicited any other Bidder to submit a false or sham Bid:
- C. Bidder has not solicited or induced any individual or entity to refrain from bidding; and
- D. Bidder has not engaged in corrupt, fraudulent, collusive, or coercive practices in competing for the Contract. For the purposes of this Paragraph 4.01.D:

- 1. "corrupt practice" means the offering, giving, receiving, or soliciting of anything of value likely to influence the action of a public official in the bidding process;
- 2. "fraudulent practice" means an intentional misrepresentation of facts made (a) to influence the bidding process to the detriment of Owner, (b) to establish bid prices at artificial non-competitive levels, or (c) to deprive Owner of the benefits of free and open competition;
- 3. "collusive practice" means a scheme or arrangement between two or more Bidders, with or without the knowledge of Owner, a purpose of which is to establish bid prices at artificial, non-competitive levels; and
- 4. "coercive practice" means harming or threatening to harm, directly or indirectly, persons or their property to influence their participation in the bidding process or affect the execution of the Contract.

ARTICLE 5 - BASIS OF BID

5.01 Bidder will complete the Work in accordance with the Contract Documents for the following price(s):

Item No.	Description	Estimated Quantity	Unit	Unit Price	То	tal Price
Mobiliz	ration / Demobilization					
1	Furnish all products, materials, and equipment and perform all labor necessary to complete and put into operation the DuPont Pump Station and Basin Improvements (Phase 2), including all work shown on the Drawings and per the requirements provided in the Specifications, but not including Bid Items 2 and 3.			\$		
2	Furnish all products, materials, and equipment and perform all labor necessary to complete the <i>precast restroom</i> , including all work shown on the Drawings and per the requirements provided in the Specifications.	Lump Sum		\$		
3	Furnish all products, materials, and equipment and perform all labor necessary to complete the <i>dock repairs</i> , including all work shown on the Drawings and per the requirements provided in the Specifications,	Lump Sum		\$		
Cash All	Cash Allowances					
4 Soil, Concrete and Materials Testing		Al	llowance		\$	40,000
5	5 Construction Verification Surveying Allowance		\$	15,000		
6	6 Permitting Allowance		\$	15,000		
7	7 Landscape Plan Development and Landscaping Allowance		\$	50,000		
8	Connection to Existing Waterline Allowance			\$	30,000	
9	Power Company Allowance	Al	llowance		\$	100,000
			Tota	l Base Bid:	\$	

BID TOTAL, ITEMS 1 THROUGH 9, INCLUSIVE, THE AMOUNT OF		
	DOLLARS (\$).

ARTICLE 6 – TIME OF COMPLETION

- 6.01 Bidder agrees that the Work will be substantially complete and will be completed and ready for final payment in accordance with Paragraph 14.07 of the General Conditions on or before the dates or within the number of calendar days indicated in the Agreement.
- 6.02 Bidder accepts the provisions of the Agreement as to liquidated damages.

ARTICLE 7 - ATTACHMENTS TO THIS BID

- 7.01 The following documents are submitted with and made a condition of this Bid:
 - A. Statement of Bidders Qualifications
 - B. Affidavit of No Collusion by Prime Bidder
 - C. Drug-Free Workplace Affidavit
 - D. Iran Divestment Act Compliance Certification
 - E. Attestation Regarding Personnel Used in Contract Performance
 - F. Certification By Proposed Prime or Subcontractor Regarding Equal Employment Opportunity
 - G. Certification Regarding Debarment, Suspension and Other Responsibility Matters

ARTICLE 8 - DEFINED TERMS

8.01 The terms used in this Bid with initial capital letters have the meanings stated in the Instructions to Bidders, the General Conditions, and the Supplementary Conditions.

ARTICLE 9 - BID SUBMITTAL

9.01	This Bid submitted by:	
An Inc	<u>dividual</u>	
	Name (typed or printed):	
	By:(Individual's signature)	(SEAL)
	(Individual's signature) Doing business as:	
	Attest:(Notary)	
	Name (typed or printed):	
A Par	<u>tnership</u>	
	Partnership Name:	(SEAL)
	By:(Signature of general partner – attach evidence of authority to sign)	
	Name (typed or printed):	
	Attest:(Signature of another Partner)	
	Name (typed or printed):	
A Cor	<u>poration</u>	
	Corporation Name:	(SEAL)
	State of Incorporation:	
	Type (General Business, Professional, Service, Limited Liability):	
	By:	
	Title:	
	(CORPORATE SEAL) Attest:)
	(Signature of Corporate Secretary) Name (typed or printed):	
	Date of Qualification to do business in Tennessee is	

Joint Venture	
Name of Joint Venturer:	
First Joint Venturer Name: (SEA	AL)
By:	
(Signature of first joint venture partner)	
Name (typed or printed):	
Title:	
Second Joint Venturer Name: (SEA	۹L)
By:	
By:(Signature of second joint venture partner)	
Name (typed or printed):	
Title:	
(Each joint venturer must sign. The manner of signing for each individual, partnership, and corporation that is a party to the joint venture should be in the manner indicated above.)	
I Bidders shall complete the following:	
Bidder's Business address:	
Phone: Facsimile:	
Primary Contact:	
E-mail:	
Submitted on, 201	
State Contractor License No	

This document was prepared in part from material (EJCDC C-410 Suggested Bid Form for Construction Contracts) which is copyrighted as indicated below:

Copyright © 2007 National Society of Professional Engineers 1420 King Street, Alexandria, VA 22314-2794 (703) 684-2882 www.nspe.org

> American Council of Engineering Companies 1015 15th Street N.W., Washington, DC 20005 (202) 347-7474 www.acec.org

American Society of Civil Engineers 1801 Alexander Bell Drive, Reston, VA 20191-4400 (800) 548-2723 www.asce.org

Associated General Contractors of America 2300 Wilson Boulevard, Suite 400, Arlington, VA 22201-3308 (703) 548-3118 www.agc.org

The copyright for this EJCDC document is owned jointly by the four EJCDC sponsoring organizations and held in trust for their benefit by NSPE

Appendix A

Geotechnical Data Report

DuPont Gravity Sewer and Pump Station Chattanooga, Tennessee

October 26, 2018 Terracon Project No. E2175151

Prepared for:

CDM Smith Knoxville, TN

Prepared by:

Terracon Consultants, Inc. Chattanooga, Tennessee

terracon.com

Environmental Facilities Geotechnical Materials

October 26, 2018

Terracon GeoReport

CDM Smith 1100 Marion Street, Suite 300 Knoxville, TN 37921

Attn: Mr. Daniel Unger, P.E.

E: ungerdi@cdmsmith.com

Re: Geotechnical Data Report

DuPont Gravity Sewer and Pump Station

DuPont Parkway to Dixie Drive

Chattanooga, Tennessee

Terracon Project No. E2175151

Dear Mr. Unger:

This Geotechnical Data Report documents the results of field and laboratory programs described in the contract documents. Attached find:

- Boring logs with field and laboratory data (Boring Nos.B-101 through B-113; B-201-B-210;
 B-215 and B-216);
- Stratification based on visual soil and rock classification is included on the logs:
- Groundwater levels observed during and at completion of drilling;
- Site Location Plans and Boring Location Plans;
- Subsurface exploration conditions;
- Description of subsurface conditions; and
- Tabulated laboratory results and appendices of laboratory reports.

We appreciate the opportunity to be of continued service to you on this project. Should you have any questions or if we may be of further assistance, please contact us.

Sincerely,

Terracon Consultants, Inc.

John D. Cannon, P.E.

Senior Engineer

Erank Whitman, P.E.

Senior Engineer

Terracon Consultants, Inc. 51 Lost Mound Drive, Suite 135 Chattanooga, TN 37406 P 423 499 6111 F 423 499 8099 terracon.com

REPORT TOPICS

INTRODUCTION	1
SITE CONDITIONS	1
PROJECT DESCRIPTION	
GEOTECHNICAL CHARACTERIZATION	
GENERAL COMMENTS	

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES
SITE LOCATION AND EXPLORATION PLANS
EXPLORATION RESULTS (Boring Logs and Laboratory Data)
SUPPORTING INFORMATION (General Notes, Unified Soil Classification System, and Description of Rock Properties)

DuPont Gravity Sewer and Pump Station
DuPont Parkway to Dixie Drive
Chattanooga, Tennessee
Terracon Project No. E2175151
October 26, 2018

INTRODUCTION

This data report presents the results of our subsurface exploration for the proposed Gravity sewer and Pump Station project to be located at DuPont Parkway to Dixie Drive in Chattanooga, Tennessee.

The geotechnical engineering scope of services for this project included the advancement of 25 test borings to depths ranging from approximately 15 to 60 feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the **Exploration Results** section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description	
Parcel Information The gravity sewer will extend from DuPont Parkway to Dixie Driv Chattanooga, Tennessee. The pump station will be located at ap GPS coordinates 35.0959, -85.2664.		
Existing Improvements	The gravity sewer will follow an existing public easement. The planned alignment is mostly wooded. The pump station will be in an area that is currently partially asphalt-paved and partially grassed.	
Existing Topography	The invert of the gravity sewer will start at approximate elevation 648.7 and end at 645.0.	

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage and our final understanding of the project conditions is as follows:

Item	Description	
Information Provided	Information was provided by Daniel Unger, P.E., with CDM Smith	
Project Description	Gravity Sewer, about 7,000 LF, 48 inches in diameter, including 1 railroad crossing and 1 aerial creek crossing Pump station (20 to 22 feet deep) with an adjacent electrical building, emergency generator, and diversion structure	
Estimated Start of Construction	2019	

GEOTECHNICAL CHARACTERIZATION

Geology

The project site is in the Valley and Ridge, a geologic setting in which parallel valleys and ridges are oriented southwest–northeast. The area is characterized by ancient sedimentary rocks which have been subjected to thrust faulting, resulting in the formation of perpendicular joints – fractures along which there has been little if any movement – with one set oriented southwest-northeast and the other set southeast-northwest. The ridges tend to have a resistant cap of sandstone underlain by limestone, dolomite and shale sequences, similar to those found in the valleys. Limestone and dolomite are carbonate rocks which have an elevated potential to be impacted by weathering and solution activity, especially along joints and bedding planes. Solution activity can result in development of soft soil zones at the soil-rock interface, and weathering of bedrock along joints producing voids, slots (void or soil-filled) or caverns. Soil or rock overlying a void may remain stable due to arching, but when de-stabilized, can result in a surface breach, either a "drop out" or a sinkhole.

The rock formation underlying the site is the Chickamauga Group, a predominantly limestone sequence which may include greenish-gray calcareous shale, shaley limestone and dolomite.

Subsurface Profile

We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting. The following table provides our geotechnical characterization. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/Density/Rock Strength
Surface	0.3 to 0.8	Topsoil or Asphalt pavement and aggregate base	N/A
Existing Fill ¹	3 to 6	Uncontrolled fill comprised of lean clay, gravelly lean clay, and sand and gravel.	Variable
Upper Soils	15 to 30 ²	Lean clay, fat clay, sandy lean clay, clayey sand	Cohesive: Typically, stiff to hard with some zones of very soft to medium stiff
			Cohesionless: Lose to medium dense
Lower	15 to 36.2 ³	Sandy silt, silt, silty sand, sand, sand and gravel	Cohesive: Very soft to medium stiff
Soils			Cohesionless: Typically, medium dense to dense
Bedrock	All other test borings terminated in this stratum	Limestone with some shale.	Medium strong

- 1. Only encountered at test borings B-108, B-205, B-206, B-208.
- 2. Test borings B-102, B-105, B-109 to B-113, B-201 to B-207, B-209, B-210, B-215, and B-216 terminated in this stratum.
- 3. Test borings B-103, B-106, and B-208 terminated in this stratum.

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types; in situ, the transition between materials may be gradual.

Groundwater Conditions

The boreholes were observed while drilling and after completion for the presence and level of groundwater. The water levels observed in the boreholes can be found on the boring logs in **Exploration Results** and are summarized below.

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151

Boring Number	Approximate Depth to Groundwater while Drilling (feet) ¹	Approximate Depth to Groundwater after Drilling (feet) ¹	
B-101	31 (el. 623)	Not encountered	
B-106	27 (el.625)	Not encountered	
B-107	27 (el.625)	Not encountered	
B-108	26 (el.626)	Not encountered	
Below ground surface			

Groundwater was not observed in the remaining borings while drilling, or for the short duration the borings could remain open. However, this does not necessarily mean the borings terminated above groundwater, or the water levels summarized above are stable groundwater levels. A relatively long period may be necessary for a groundwater level to develop and stabilize in a borehole. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

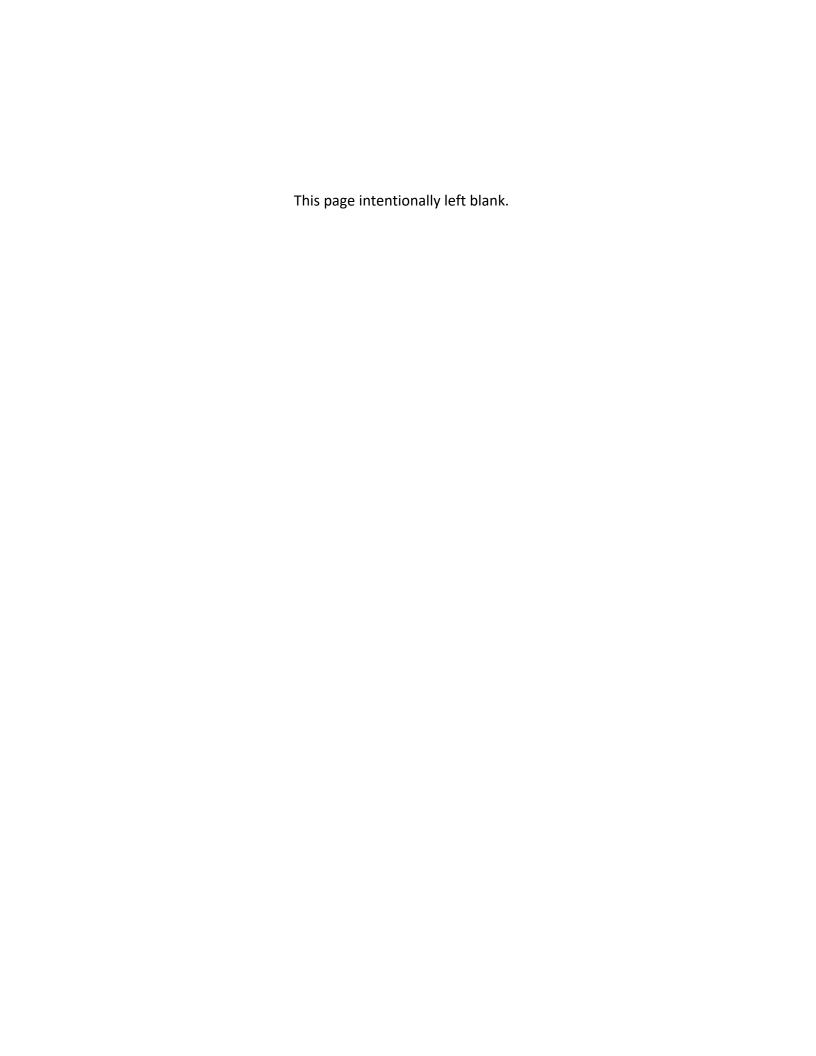
The project site is located just downstream of the Chickamauga Dam on the Tennessee River. The pool elevation of the Tennessee River at the project site is heavily dependent upon TVA's management of the Tennessee River at the upstream dam and downstream Nickajack Dam. However, the Tennessee River pool elevation is generally between 630 and 640 feet, MSL under normal circumstances. According to NOAA, flood stage is at Elevation 651 feet.

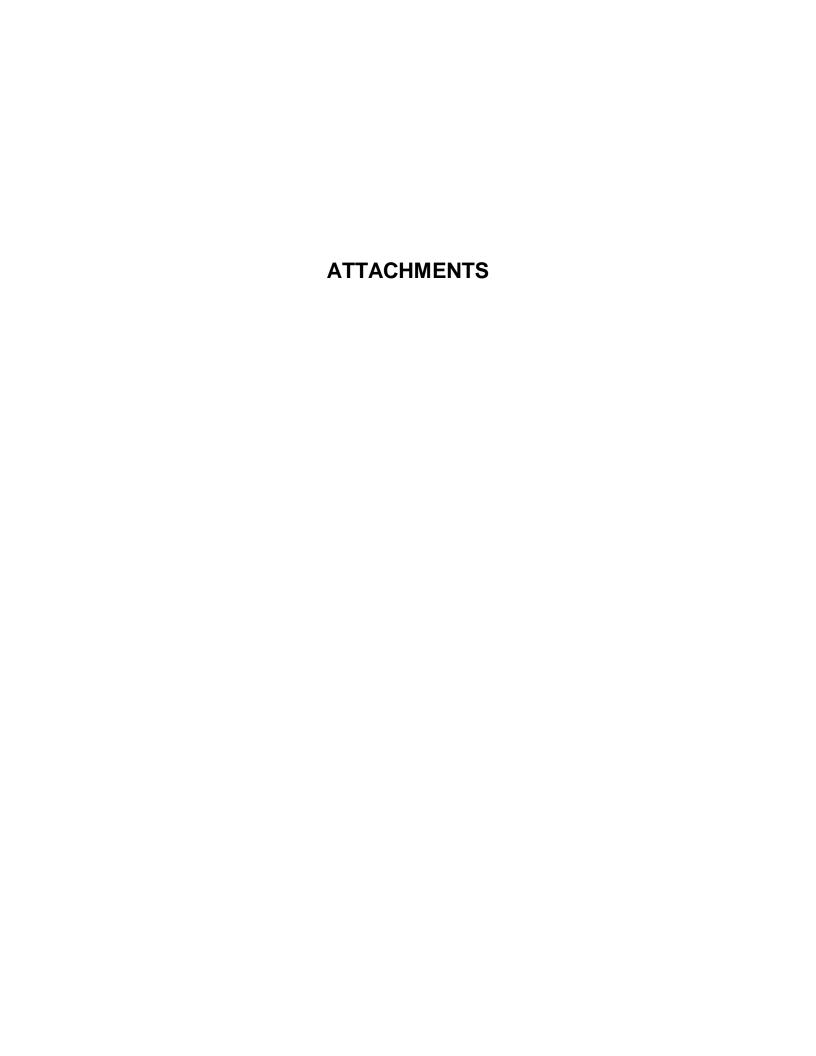
GENERAL COMMENTS

As the project progresses, we address assumptions by incorporating information provided by the design team, if any. Revised project information that reflects actual conditions important to our services is reflected in the final report. The design team should collaborate with Terracon to confirm these assumptions and to prepare the final design plans and specifications. This facilitates the incorporation of our opinions related to implementation of our geotechnical recommendations. Any information conveyed prior to the final report is for informational purposes only and should not be considered or used for decision-making purposes.

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather.

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151




The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in the final report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151

EXPLORATION AND TESTING PROCEDURES

Field Exploration

CDM Smith prescribed the following boring locations:

Number of Borings	Planned Boring Depth (feet) 1	Planned Location	
8	30 to 60 feet	Pump Station, Diversion Structure, Electrical Building, and Generator	
(B-101 to B-108)			
2	20 feet	Manholes near Pump Station	
(B-109 and B-110)	20 1001		
3	15 feet	Parking Area	
(B-111 to B-113)	15 feet		
14	15 to 20 feet	Gravity Sewer Alignment	
(B-201 to B-210)	13 to 20 feet	(approximate 500-foot spacing)	
2	15 feet	Railroad crossing for gravity sewer	
(B-215 and B-216)	15 leet		

^{1.} Feet below the ground surface

Boring Layout and Elevations: Borings were staked and surveyed by CDM Smith.

Subsurface Exploration Procedures: We advanced soil borings with a track- or truck-mounted drill rig using continuous flight hollow stem augers. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. Soil sampling was performed using split-barrel or thin-walled sampling procedures. In the thin-walled tube sampling procedure, a thin-walled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the soil to obtain a relatively undisturbed sample. A standard 2-inch outer diameter split barrel sampling spoon is driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer.

Test borings B-101, B-104, and B-108 extended to auger refusal. Upon encountering bedrock or refusal-to-drilling conditions at these locations, rock coring (using NQ2 rock core barrel) was performed.

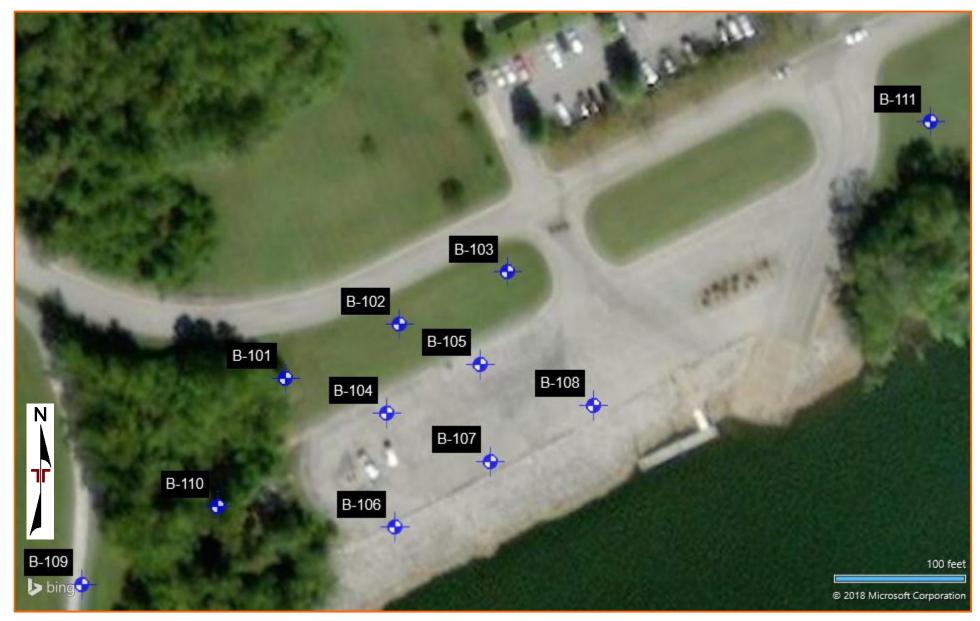
Our exploration team prepared field boring logs as part of standard drilling operations including sampling depths, penetration distances, and other relevant sampling information. Field logs include

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee October 26, 2018 ■ Terracon Project No. E2175151

visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs, prepared from field logs, represent the geotechnical engineer's interpretation, and include modifications based on observations and laboratory tests.

Laboratory Testing

CDM Smith provided Terracon with the laboratory testing assignments for the sampled soil and rock strata. Procedural standards noted below are for reference to methodology in general. In some cases, local practices and professional judgement require method variations. Standards noted below include reference to other related standards. Such references are not necessarily applicable to describe the specific test performed.


- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture)
 Content of Soil and Rock by Mass
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- ASTM D2435/D2435M Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- ASTM D4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils (3 point test)
- ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperature – Method C

SITE LOCATION AND EXPLORATION PLANS

EXPLORATION PLAN

DuPont Additional Borings • Chattanooga, TN
October 19, 2018 • Terracon Project No. E2175151

EXPLORATION PLAN

DuPont Additional Borings • Chattanooga, TN
October 19, 2018 • Terracon Project No. E2175151



EXPLORATION PLAN

DuPont Additional Borings
Chattanooga, TN
October 19, 2018 Terracon Project No. E2175151

EXPLORATION RESULTS

E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL

E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT, GEO SMART LOG-NO WELL

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL GPJ TERRACON DATATEMPLATE.GDT 10/26/18

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL GPJ TERRACON DATATEMPLATE.GDT 10/26/18

SUMMARY OF LABORATORY RESULTS

89	Borehole	Depth	USCS	In-Situ P	roperties	Cla	assific	ation			Ex	pansion	Testing		Corrosivity			
8/20/18	No.	(ft.)	Soil	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry Density	Water	Surcharge	Expansion	Expansion		Resistivity	Sulfates	Remarks
GDT 8		,	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	(pcf)	Content (%)	(psf)	(%)	Index El 50	pН	(ohm-cm)	(ppm)	
ATE.6	B-101	1	CH		19	97	54	25	29									
MPLA	B-101	3.5			20													2
ATE	B-101	8.5			23													2
DAT	B-101	13.5			25													2
SON	B-101	23.5			32													2
TERRACON	B-101	28.5	ML		41	57	NP	NP	NP									
GPJ TE	B-102	20			27													2
AL.GF	B-102	25	CL		30	87	41	21	20									
TIONAL	B-102	30			42	77												2
ADDI	B-103	2.5	CH		20	97	52	24	28									
TNC	B-103	6.5	CL		24	96	47	23	24									
DUPC	B-103	10			25													2
151	B-103	20			28													2
E217	B-103	25			29													2
ES	B-103	30	ML		44	61	NP	NP	NP									
ERT	B-104	2.5			18	53												2
PROPERT	B-104	20	CL		28	71	32	21	11									
SOIL	B-104	25	ML		33	63	30	25	5									
- 1	B-105	1				86												
REPORT	B-105	5			17		45	21	24									
	B-105	6.5			26	43												2
RIGIL	B-105	15			25													2
PARATED FROM ORIGINAL	B-105	25	CL		30	84	36	20	16									
) FR(B-105	30			44													2
ATE	B-106	2.5			19	51												2
PAR	DEMARKS			1									ı					

- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.
 2. Visual Classification.
 3. Submerged to approximate saturation.
 4. Expansion Index in accordance with ASTM D4829-95.
 5. Air-Dried Sample

5.	Aır-I	Dried	Samp	le
----	-------	-------	------	----

PROJECT: DuPont Additional Borings	lleccacon	PROJECT NUMBER: E2175151
SITE: DuPont Parkway Chattanooga, Tennessee	51 Lost Mound Dr, Ste 135 Chattanooga, TN	CLIENT: CDM Smith Inc. Knoxville, TN
SHT.	PH. 423-499-6111 FAX. 423-499-8099	EXHIBIT: B-1

SUMMARY OF LABORATORY RESULTS

<u></u>	Borehole Dep	Donth	Depth USCS						Expansion Testing					Corrosivity				
8/20/18	No.	(ft.)	Soil	Dry Density	Water	Passing #200	Atter	berg L	imits	Dry	Water	Surcharge	Expansion	Expansion Index		Resistivity	Sulfates	Remarks
DT 8			Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	Density (pcf)	Content (%)	(psf)	(%)	El 50	pН	(ohm-cm)	(ppm)	
TE.G	B-106	5			18													2
MPLA	B-106	6.5	CH		27													2
ATE	B-106	10			22													2
DAT	B-106	15			23													2
CON	B-106	20	CL		27	87	39	23	16									
FRRA	B-106	25			27													2
ر 1	B-106	30	SM		35	23	31	29	2									
AL.GF	B-107	2.5			16													2
E2175151 DUPONT ADDITIONAL GPJ TERRACON DATATEMPLATE GDT	B-107	5	SC		16	50	43	19	24									
-IDDI	B-107	10	CH		36	79	50	24	26									
) TNC	B-107	20			26													2
DUP	B-107	25	ML		35	71	30	28	2									
5151	B-107	30			15	13												2
=217	B-108	3.5			17		49	20	29									
	B-108	6	CH		27													2
PERT	B-108	8.5	CL		35	94	48	25	23									
PROF	B-108	13.5			26													2
SOIL PROPERTIES	B-108	18.5			22		38	21	17									
	B-108	23.5	CL		38	84	37	24	13									
REPC	B-108	28.5			10	6												2
VAL F	B-110	2.5			15													2
PARATED FROM ORIGINAL REPORT.	B-110	5	CL		19	64	40	21	19									
O WO	B-110	6.5			24													2
) FR(B-110	10			25													2
ATE	B-110	15	CL		26	86	41	20	21									
ΑĀ																		

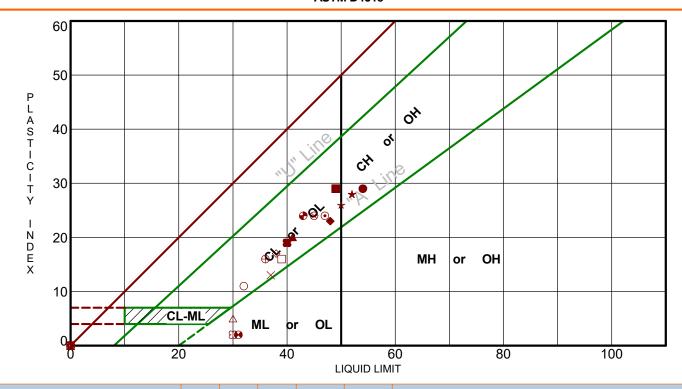
- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.
 2. Visual Classification.
 3. Submerged to approximate saturation.
 4. Expansion Index in accordance with ASTM D4829-95.
 5. Air-Dried Sample

\hookrightarrow			
-0G IS N	PROJECT: DuPont Additional Borings	Terracon	PROJECT NUMBER: E2175151
BORING	SITE: DuPont Parkway Chattanooga, Tennessee	51 Lost Mound Dr, Ste 135 Chattanooga, TN	CLIENT: CDM Smith Inc. Knoxville, TN
THIS		PH. 423-499-6111 FAX. 423-499-8099	EXHIBIT: B-2

SUMMARY OF LABORATORY RESULTS

80	Borehole	Denth	Depth Soil	In-Situ P	roperties	Cla	assific	ation			Ex	pansion	Testing			Corrosivi	ty	
8/20/18	No.	(ft.)	Soil	Dry Density	Water	Passing	Atter	berg L	imits	Dry Density	Water	Surcharge	Expansion	Expansion		Resistivity	Sulfates	Remarks
GDT 8		,	Class.	(pcf)	Content (%)	#200 Sieve (%)	LL	PL	PI	(pcf)	Content (%)	(psf)	Expansion (%)	İndex El 50	pН	(ohm-cm)	(ppm)	
ATE.G	B-110	20			28	, ,												2
	B-112	2.5	CL		23	89	44	23	21									
ratempl	B-112	5			24													2
DAT,	B-112	10	СН		24	98	51	25	26									
CON	B-112	15			25													2
ERRA	B-113	5	СН		23	98	50	26	24									
GPJ TE	B-203	2.5			24													2
	B-203	5			17													2
ADDITIONAL	B-203	7.5			19													2
ADDI.	B-203	10			22													2
٠,	B-203	15	CL		24	89	39	21	18									
DUPONT	B-203	20			24													2
5151	B-205	20	CL		25	84	33	22	11									
E2175151	B-206	2.5			9	56												2
	B-206	5			20													2
PROPERTIES	B-206	7.5	CL		21	67	32	20	12									
PROF	B-206	10			23		36	21	15									
SOIL	B-206	18.5			21													2
	B-207	15			14	41												2
REPORT.	B-208	5			13	26												2
	B-208	6.5			28	72												2
ATED FROM ORIGINAL	B-208	10			11	17												2
OMO	B-215	6.5	CL		19	76	40	22	18									
) FR	B-215	10	SC		14	21	38	20	18									
\TE														·	<u> </u>			


- REMARKS

 1. Dry Density and/or moisture determined from one or more rings of a multi-ring sample.
 2. Visual Classification.
 3. Submerged to approximate saturation.
 4. Expansion Index in accordance with ASTM D4829-95.
 5. Air-Dried Sample

PROJECT: DuPont Additional Borings	Terracon	PROJECT NUMBER: E2175151
SITE: DuPont Parkway Chattanooga, Tennessee	51 Lost Mound Dr, Ste 135 Chattanooga, TN	CLIENT: CDM Smith Inc. Knoxville, TN
SET.	PH. 423-499-6111 FAX. 423-499-8099	EXHIBIT: B-3

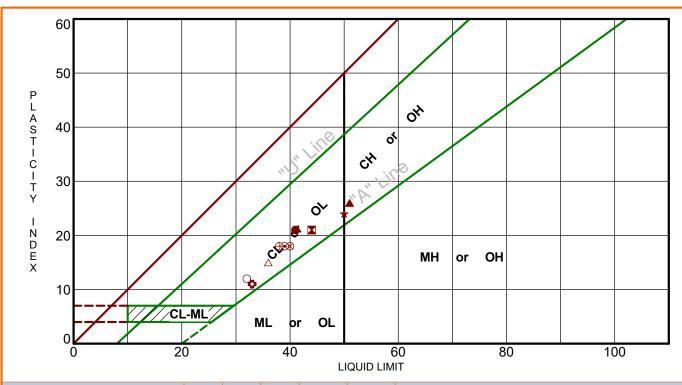
ATTERBERG LIMITS RESULTS

ASTM D4318

В	oring ID	Depth	Depth LL PL PI Fines		USCS	Description		
B	B-101	1 - 2.5	54	25	29	97	СН	FAT CLAY
	B-101	28.5 - 30	NP	NP	NP	57	ML	SANDY SILT
*	B-102	25	41	21	20	87	CL	LEAN CLAY
*	B-103	2.5	52	24	28	97	СН	FAT CLAY
	B-103	6.5	47	23	24	96	CL	LEAN CLAY
•	B-103	30	NP	NP	NP	61	ML	SANDY SILT
0	B-104	20 - 22	32	21	11	71	CL	LEAN CLAY with SAND
	B-104	25	30	25	5	63	ML	SANDY SILT
\otimes	B-105	5	45	21	24			
	B-105	25	36	20	16	84	CL	LEAN CLAY with SAND
	B-106	20	39	23	16	87	CL	LEAN CLAY
•	B-106	30	31	29	2	23	SM	SILTY SAND with GRAVEL
 ★ ★ ★ 	B-107	5	43	19	24	50	SC	CLAYEY SAND with GRAVEL
☆	B-107	10	50	24	26	79	СН	FAT CLAY with SAND
8	B-107	25	30	28	2	71	ML	SILT with SAND
	B-108	3.5 - 5	49	20	29			
•	B-108	8.5 - 10	48	25	23	94	CL	LEAN CLAY
	B-108	18.5 - 20	38	21	17			
×	B-108	23.5 - 25	37	24	13	84	CL	LEAN CLAY with SAND
	B-110	5	40	21	19	64	CL	SANDY LEAN CLAY

PROJECT: DuPont Additional Borings

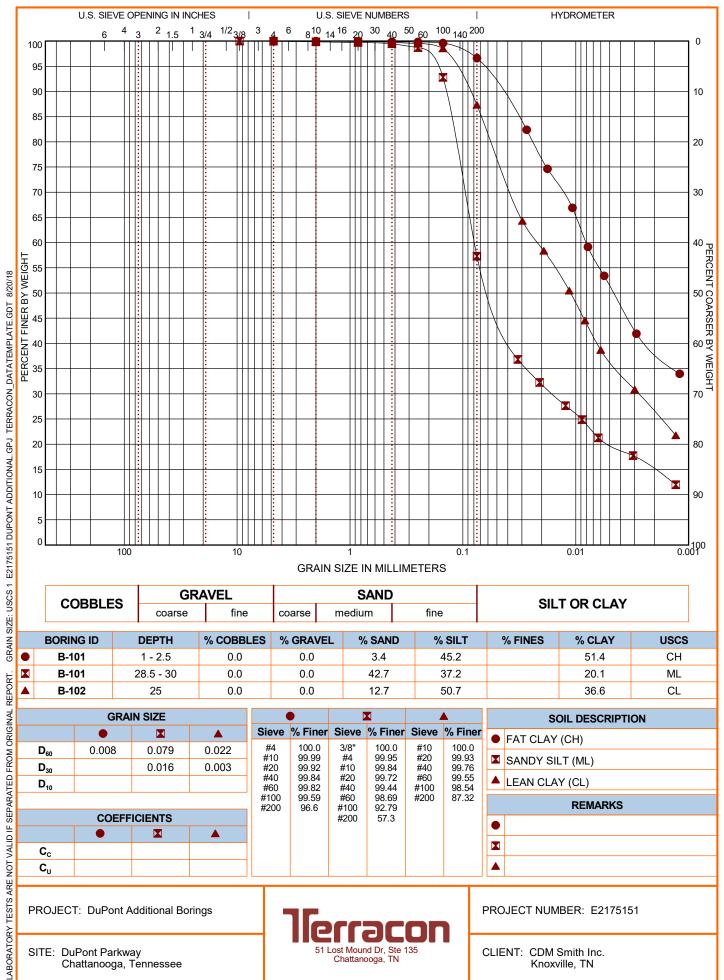
SITE: DuPont Parkway Chattanooga, Tennessee

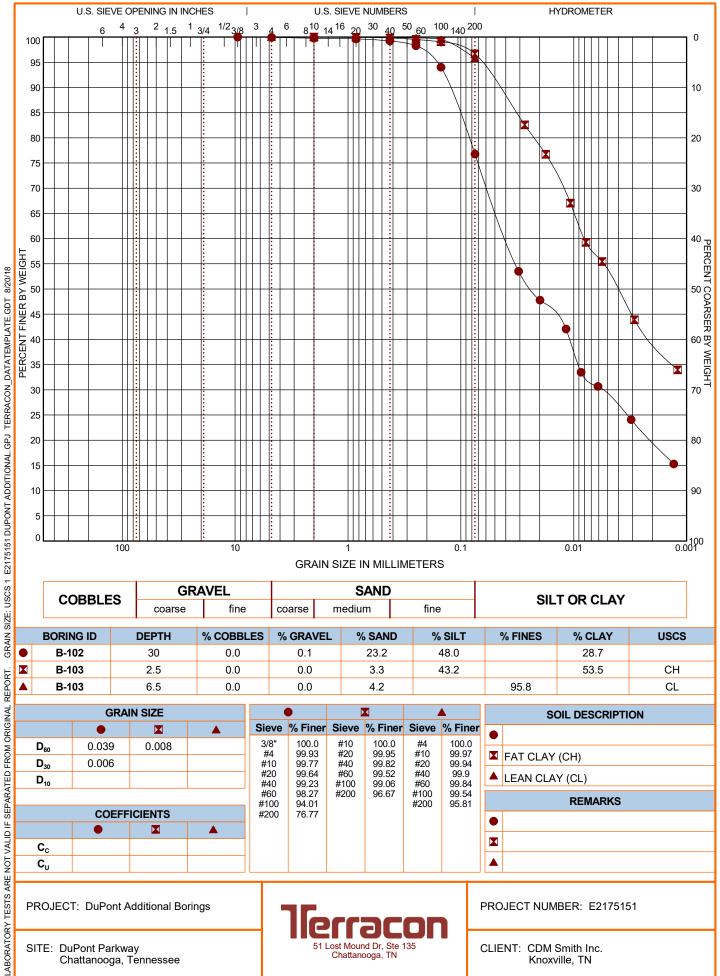

PROJECT NUMBER: E2175151

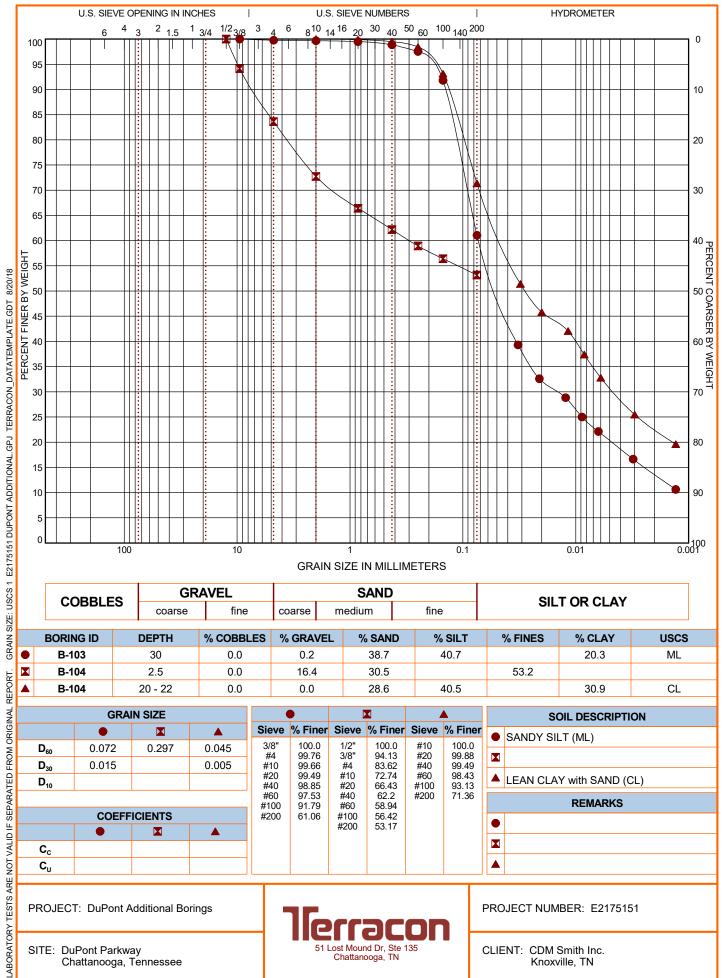
CLIENT: CDM Smith Inc. Knoxville, TN

LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. ATTERBERG LIMITS E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18

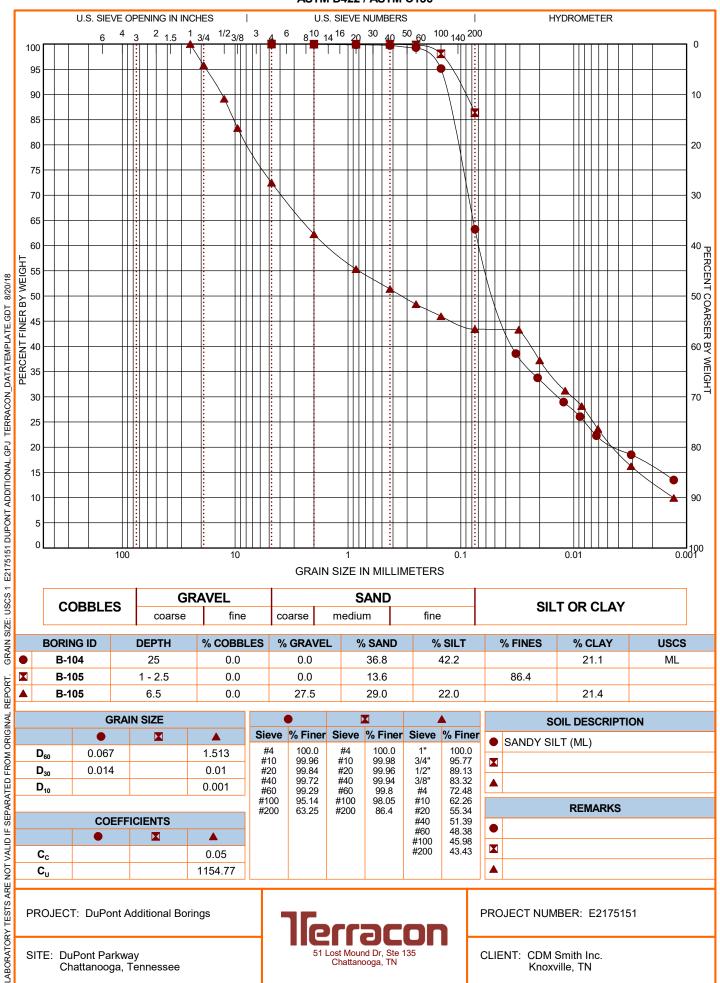
ATTERBERG LIMITS RESULTS


ASTM D4318


ATTERBERG LIMITS E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18		X 10		-ML'/	8				
LATE.G		0	////	IVIL	N	/L o	r OL		
ATATEMP		0	20)		40		QUID LIM	60 80 100 MIT
ONO	В	oring ID	Depth	LL	PL	PI	Fines	USCS	Description
ERRA(•	B-110	15	41	20	21	86	CL	LEAN CLAY
GPJ T	×	B-112	2.5	44	23	21	89	CL	LEAN CLAY
ONAL	A	B-112	10	51	25	26	98	СН	FAT CLAY
DDIT	*	B-113	5	50	26	24	98	СН	FAT CLAY
NOVT /	•	B-203	15	39	21	18	89	CL	LEAN CLAY
il DUF	۰	B-205	20	33	22	11	84	CL	LEAN CLAY with SAND
217518	0	B-206	7.5	32	20	12	67	CL	SANDY LEAN CLAY
IITS E	Δ	B-206	10	36	21	15			
3G LIN	\otimes	B-215	6.5	40	22	18	76	CL	LEAN CLAY with SAND
ERBEF	\oplus	B-215	10	38	20	18	21	SC	CLAYEY SAND with GRAVEL
PORT.									
AL RE									
RIGIN									
ROMO									
TED F									
EPARA									
VALID IF SEPARATED FROM ORIGINAL REPORT.									
T VALI									
SE NO.									
Y TESTS AF	PF	ROJECT: DuPoi	nt Additional Borir	ngs		7	err -	عدر	PROJECT NUMBER: E2175151
LABORATORY TESTS ARE NOT	SITE: DuPont Parkway Chattanooga, Tennessee					- 11	51 Lost Mou	and Dr, Ste 13 nooga, TN	CLIENT: CDM Smith Inc. Knoxville, TN

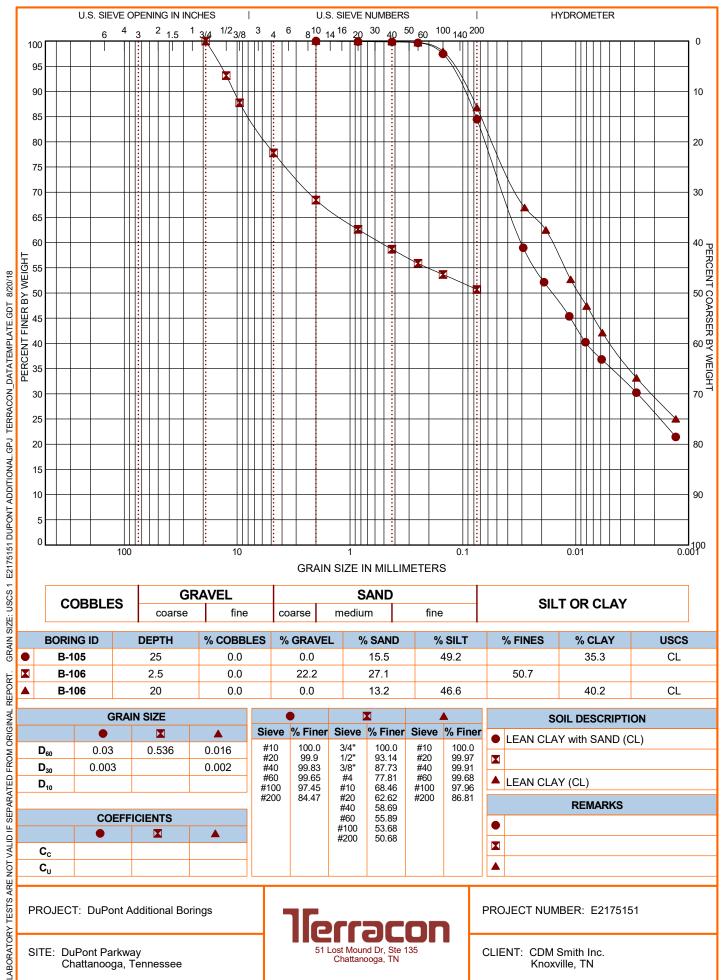


ASTM D422 / ASTM C136



Knoxville, TN

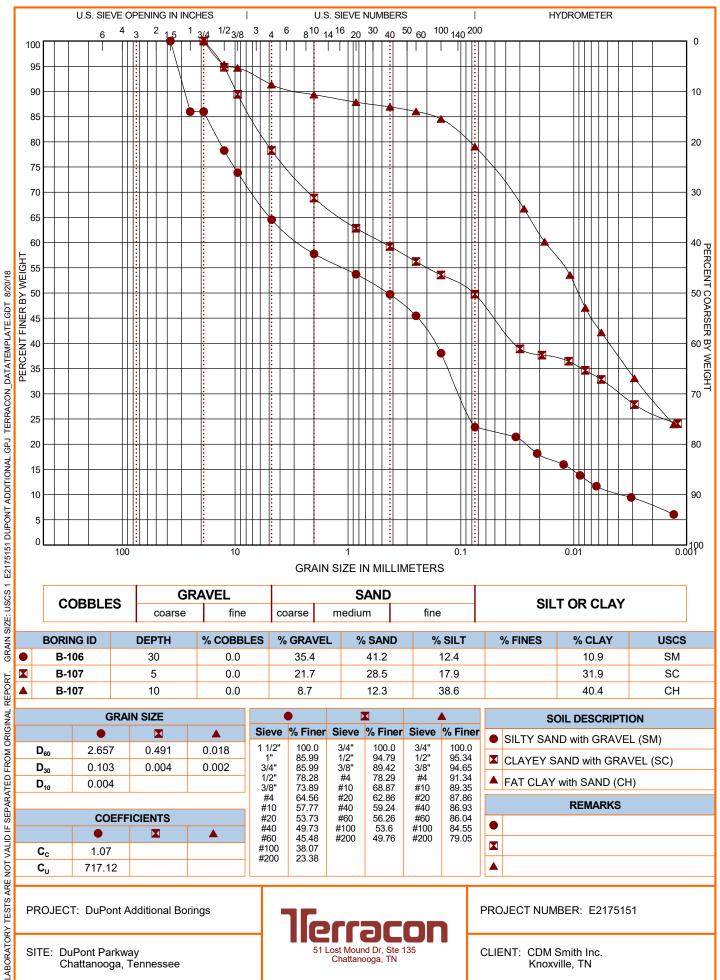
ASTM D422 / ASTM C136

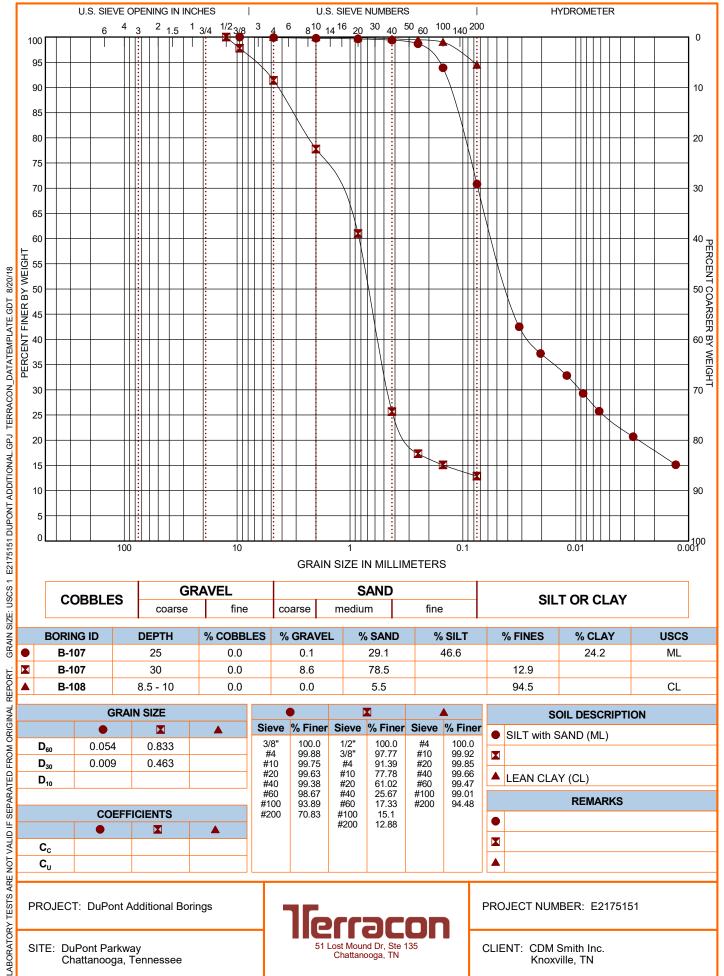


Chattanooga, Tennessee

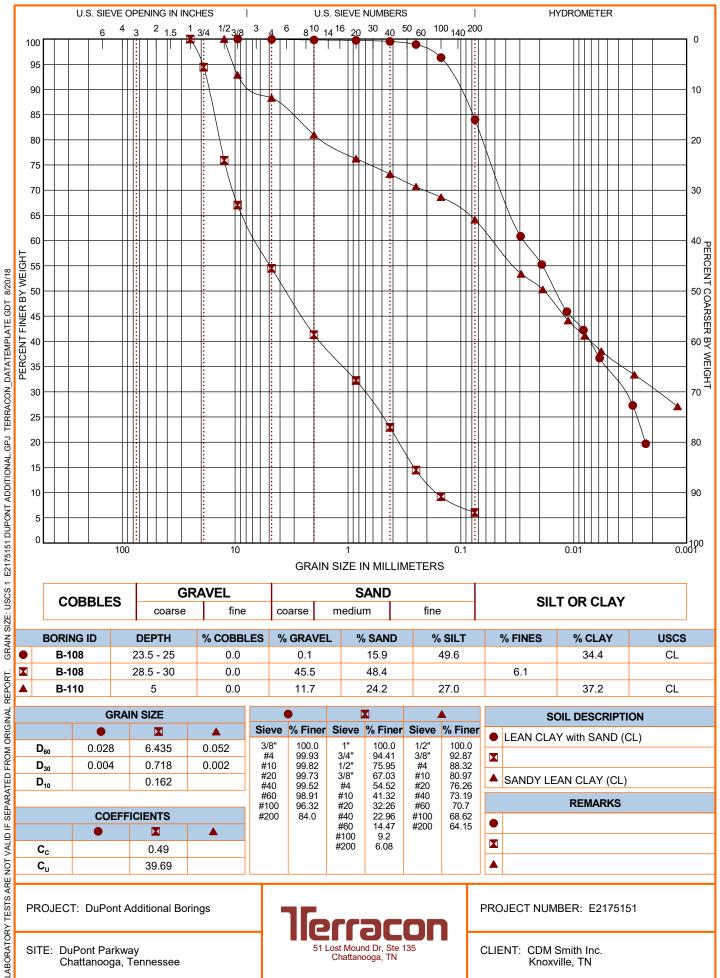
51 Lost Mound Dr, Ste 135 Chattanooga, TN

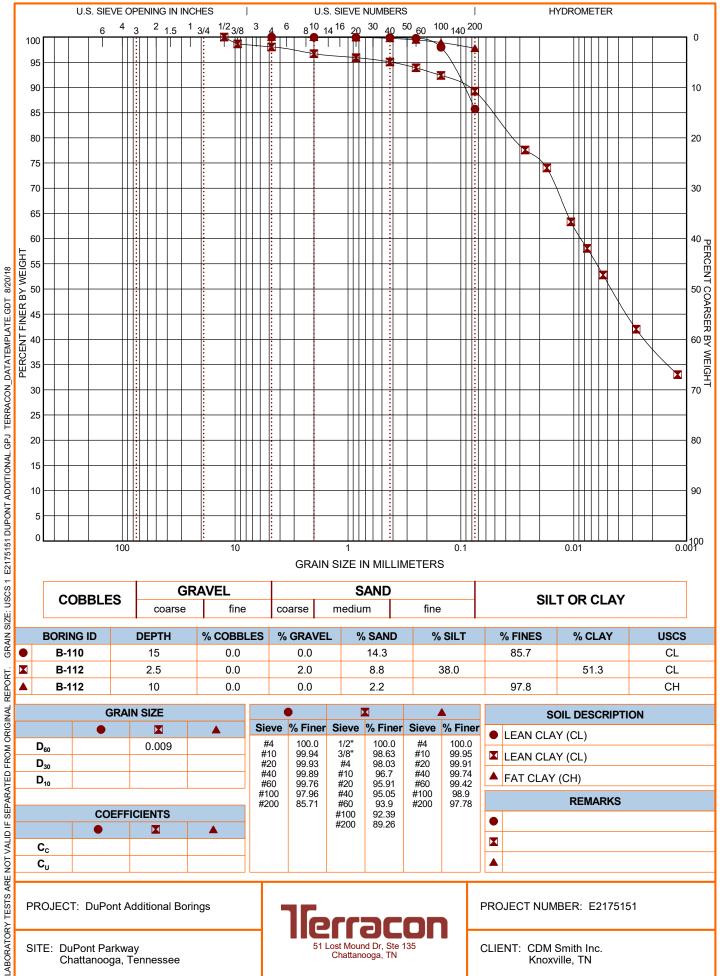
Knoxville, TN

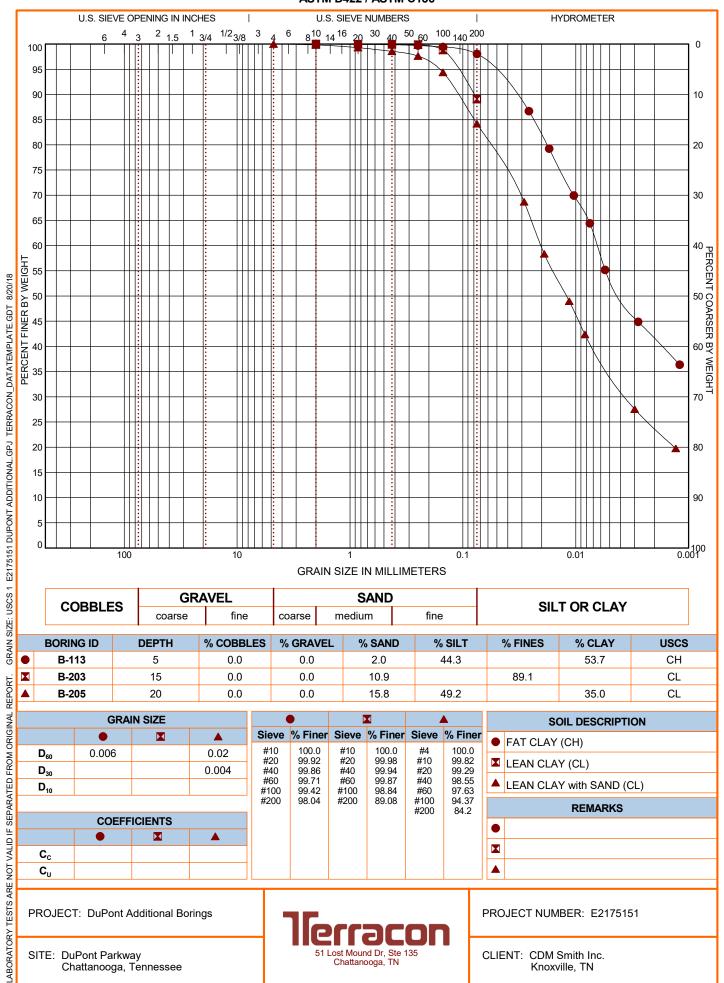

ASTM D422 / ASTM C136

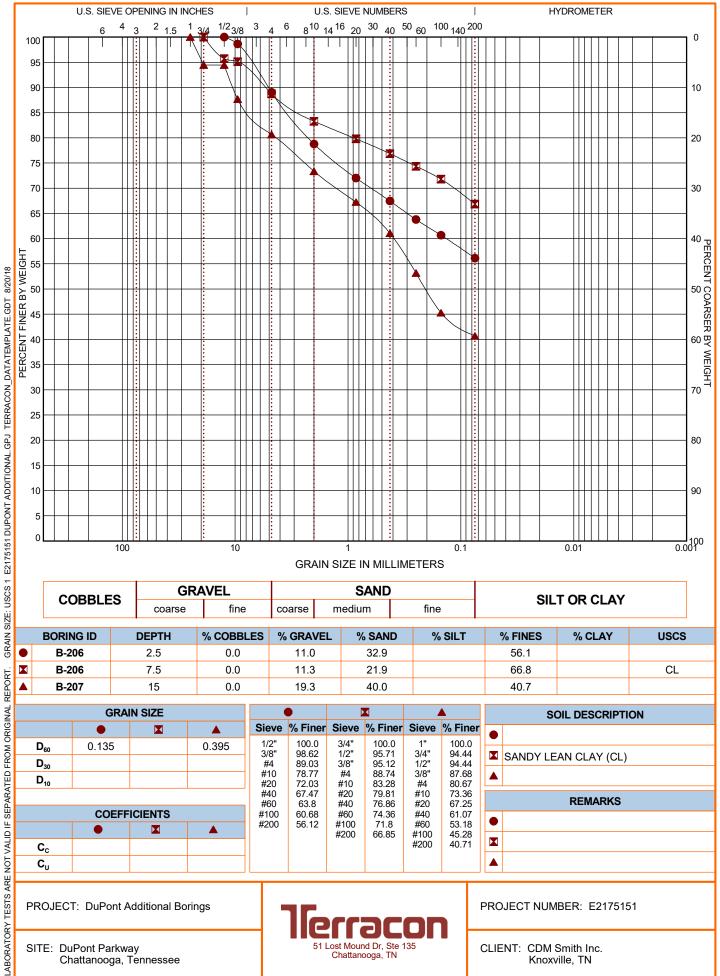

51 Lost Mound Dr, Ste 135 Chattanooga, TN

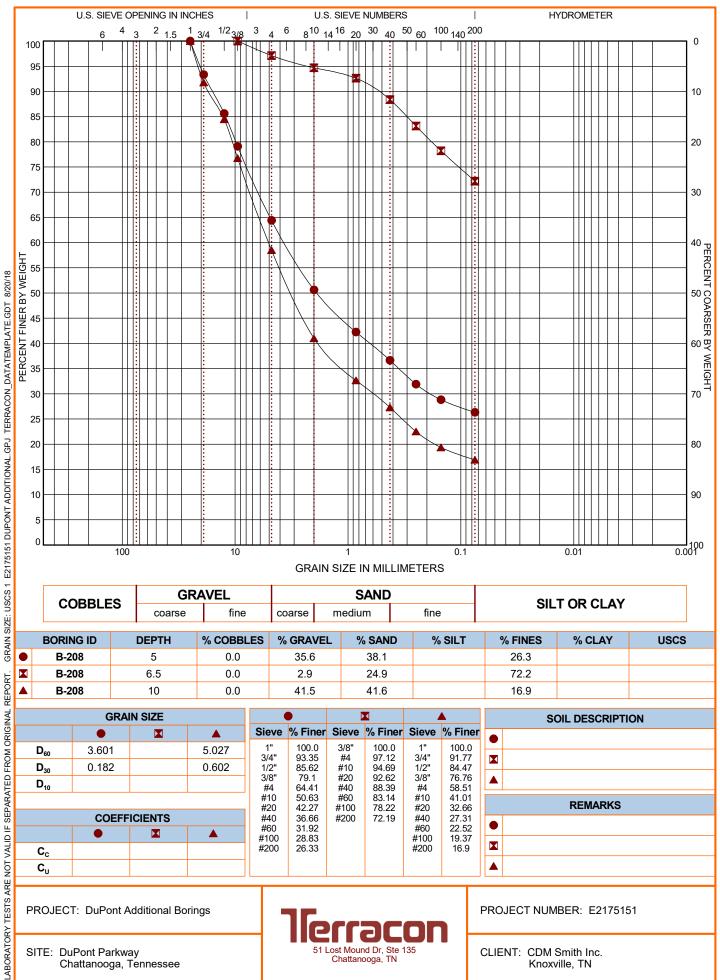
Knoxville, TN

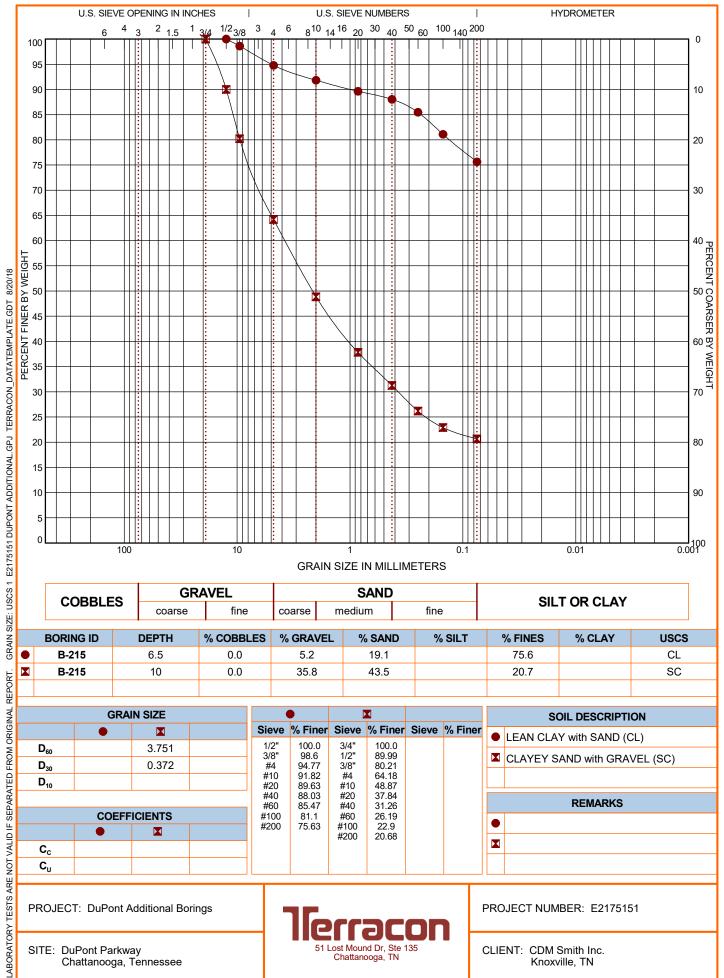

ASTM D422 / ASTM C136


SITE: DuPont Parkway Chattanooga, Tennessee 51 Lost Mound Dr, Ste 135 Chattanooga, TN

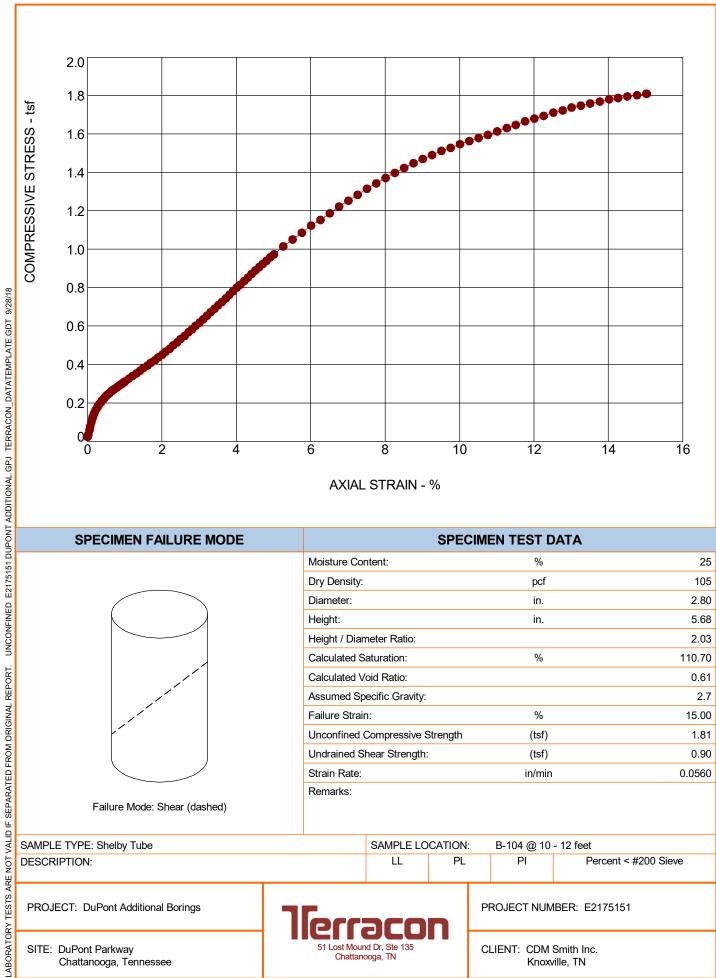



ASTM D422 / ASTM C136


SITE: DuPont Parkway Chattanooga, Tennessee 51 Lost Mound Dr, Ste 135 Chattanooga, TN



ASTM D422 / ASTM C136


Chattanooga, Tennessee

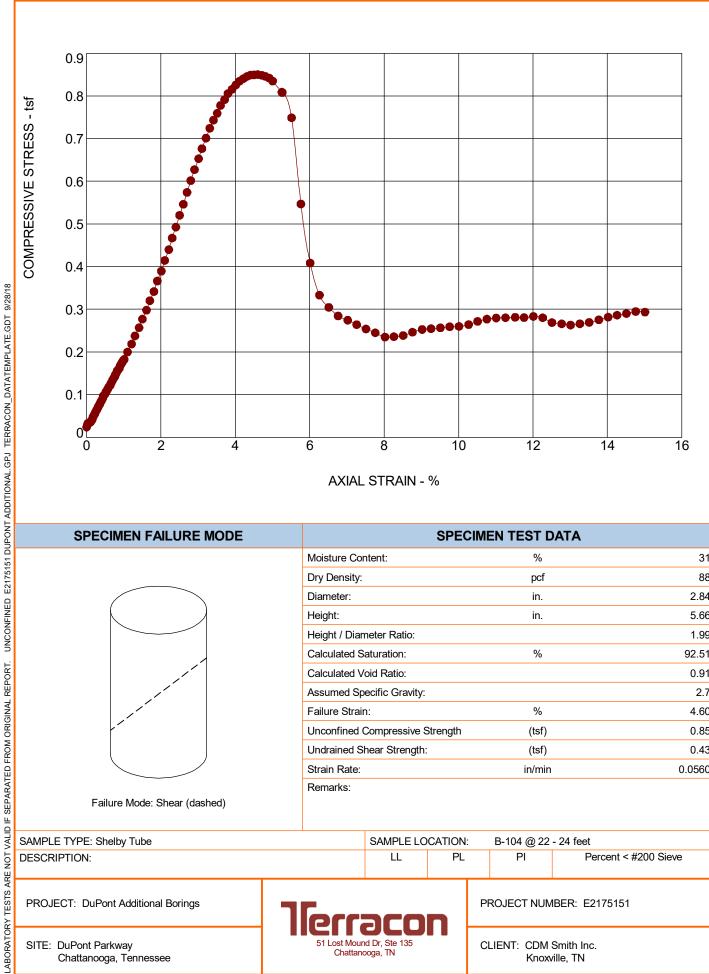
Knoxville, TN

UNCONFINED COMPRESSION TEST

ASTM D2166

SPECIMEN FAILURE MODE			SPEC	IMEN TEST D)ATA
	Moisture Cor	ntent:		%	25
	Dry Density:			pcf	105
	Diameter:			in.	2.80
	Height:			in.	5.68
	Height / Dian	neter Ratio:			2.03
	Calculated S	aturation:		%	110.70
	Calculated V	oid Ratio:			0.61
	Assumed Sp	ecific Gravity:			2.7
	Failure Strain	า:		%	15.00
	Unconfined (Compressive S	Strength	(tsf)	1.81
	Undrained S	hear Strength:		(tsf)	0.90
	Strain Rate:			in/min	0.0560
	Remarks:				
Failure Mode: Shear (dashed)					
SAMPLE TYPE: Shelby Tube		SAMPLE LO	CATION:	B-104 @ 10	- 12 feet
DESCRIPTION:		LL	PL	PI	Percent < #200 Sieve

SITE: DuPont Parkway Chattanooga, Tennessee


PROJECT: DuPont Additional Borings

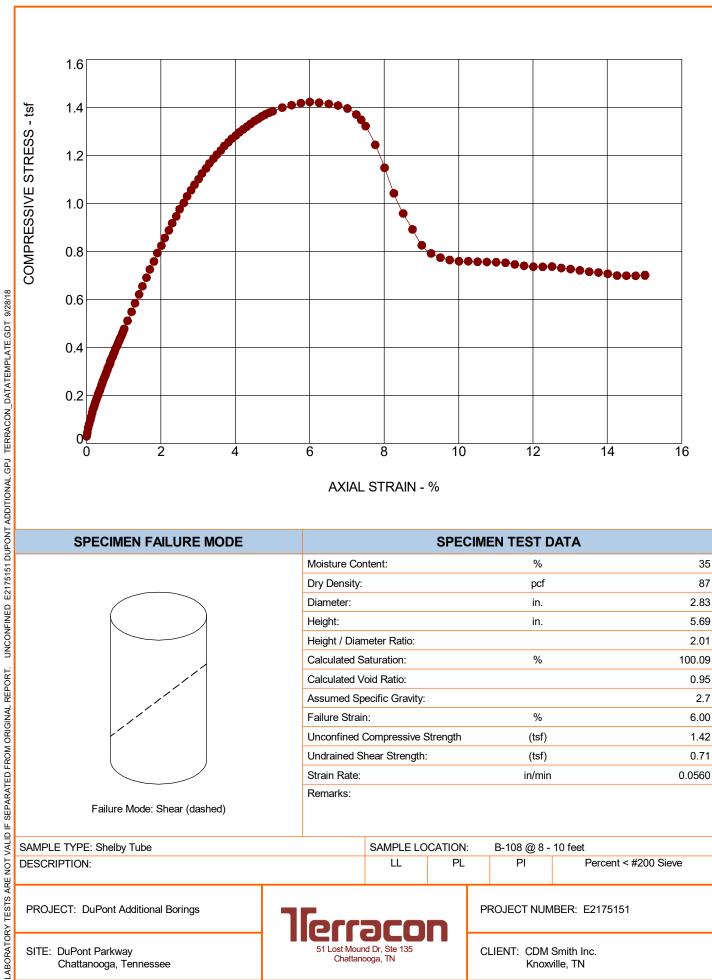
PROJECT NUMBER: E2175151

UNCONFINED COMPRESSION TEST

ASTM D2166

SPECIMEN FAILURE MODE			SPECIM	EN TEST D	ATA
	Moisture Co	ntent:		%	31
	Dry Density:			pcf	88
	Diameter:			in.	2.84
	Height:			in.	5.66
	Height / Diar	neter Ratio:			1.99
	Calculated S	Saturation:		%	92.51
//	Calculated V	oid Ratio:			0.91
	Assumed Sp	ecific Gravity:			2.7
	Failure Strai	n:		%	4.60
	Unconfined	Compressive S	Strength	(tsf)	0.85
	Undrained S	hear Strength:		(tsf)	0.43
	Strain Rate:			in/min	0.0560
	Remarks:				
Failure Mode: Shear (dashed)					
SAMPLE TYPE: Shelby Tube		SAMPLE LO	CATION:	B-104 @ 22	- 24 feet
DESCRIPTION:		LL	PL	PI	Percent < #200 Sieve

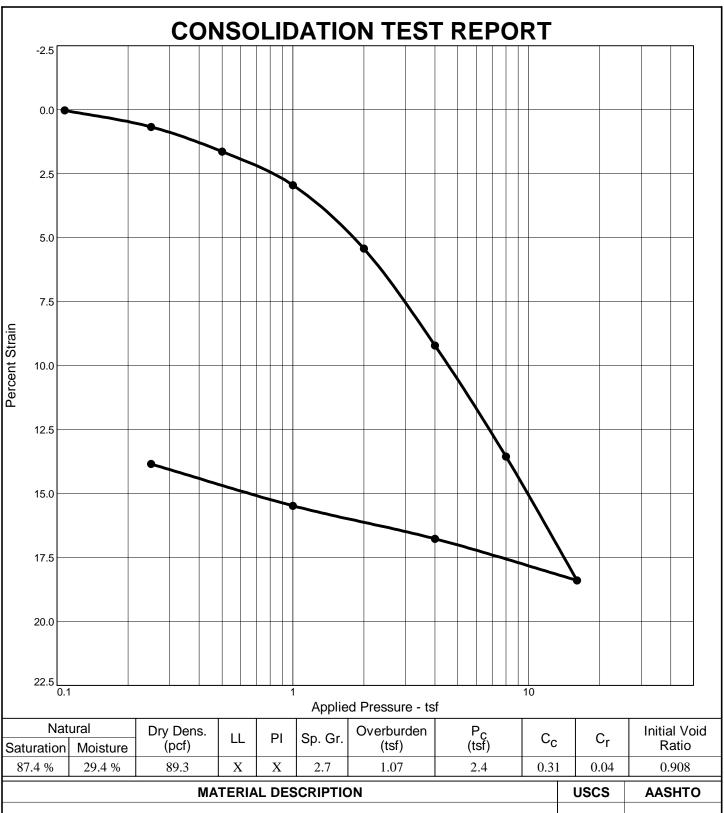
SITE: DuPont Parkway Chattanooga, Tennessee


PROJECT: DuPont Additional Borings

PROJECT NUMBER: E2175151

UNCONFINED COMPRESSION TEST

ASTM D2166


SPECIMEN FAILURE MODE			SPECIM	EN TEST D	ATA
	Moisture Co	ntent:		%	35
_	Dry Density:			pcf	87
	Diameter:			in.	2.83
	Height:			in.	5.69
	Height / Diar	neter Ratio:			2.01
	Calculated S	aturation:		%	100.09
//	Calculated V	oid Ratio:			0.95
	Assumed Sp	ecific Gravity:			2.7
	Failure Strain	n:		%	6.00
	Unconfined (Compressive S	Strength	(tsf)	1.42
	Undrained S	hear Strength:		(tsf)	0.71
	Strain Rate:			in/min	0.0560
Failure Mode: Shear (dashed)	Remarks:				
SAMPLE TYPE: Shelby Tube		SAMPLE LO	CATION:	B-108 @ 8 - 1	0 feet
DESCRIPTION:		LL	PL	PI	Percent < #200 Sieve

SITE: DuPont Parkway Chattanooga, Tennessee

PROJECT: DuPont Additional Borings

51 Lost Mound Dr, Ste 135 Chattanooga, TN

PROJECT NUMBER: E2175151

MATERIAL DESCRIPTION	USCS	AASHTO
blue-gray sandy clay	X	X

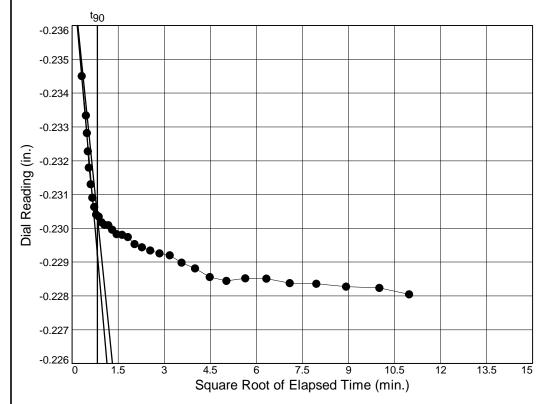
Project No. E2175151 Client: CDM Smith, Inc

Project: DuPont Additional Borings

Source of Sample: B-104

Depth: 22.0-24.0 ft Sample Number: N/A

Terracon Consultants, Inc.


Chattanooga, TN

Remarks:

Swell pressure of 215.32 psf.

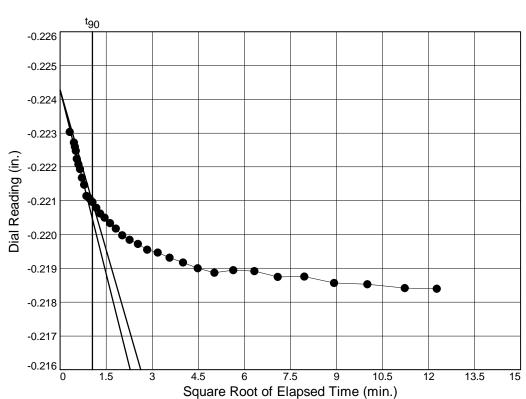
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 22.0-24.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 2

Load=0.25 tsf

 $D_0 = -0.2377$


 $D_{90} = -0.2304$

 $D_{100} = -0.2296$

 $T_{90} = 0.67 \text{ min.}$

 $C_v @ T_{90}$

3.122 ft.²/day

-Terracon Consultants, Inc.-

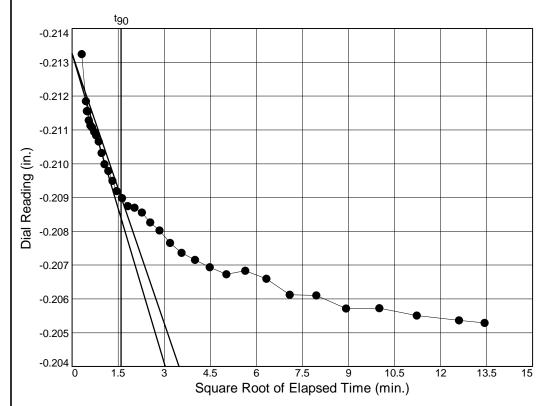
Load No.= 3

Load=0.50 tsf

 $D_0 = -0.2243$

 $D_{90} = -0.2210$

 $D_{100} = -0.2206$


 $T_{90} = 1.10 \text{ min.}$

C_v @ T₉₀

1.881 ft.2/day

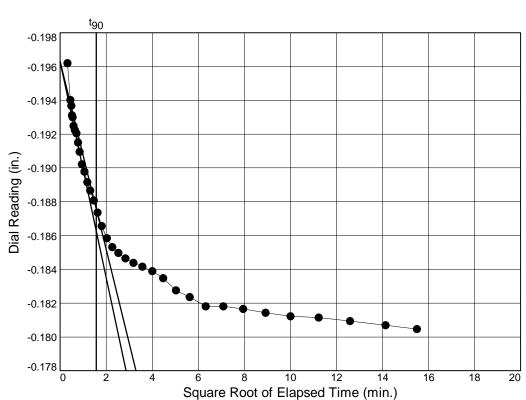
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 22.0-24.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 4

Load=1.00 tsf

 $D_0 = -0.2132$


 $D_{90} = -0.2090$

 $D_{100} = -0.2085$

 $T_{90} = 2.55 \text{ min.}$

C_v @ T₉₀

0.792 ft.²/day

-Terracon Consultants, Inc.-

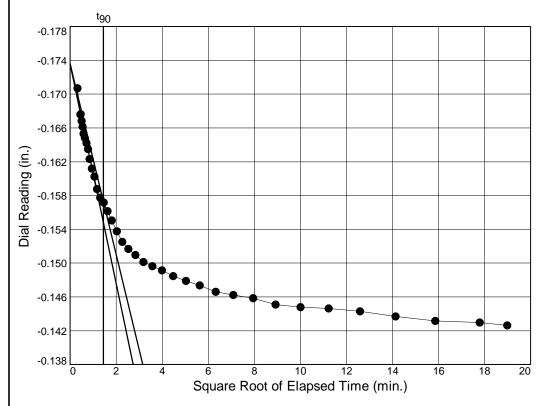
Load No.= 5

Load=2.00 tsf

 $D_0 = -0.1963$

 $D_{90} = -0.1876$

 $D_{100} = -0.1866$


 $T_{90} = 2.46 \text{ min.}$

C_v @ T₉₀

0.791 ft.2/day

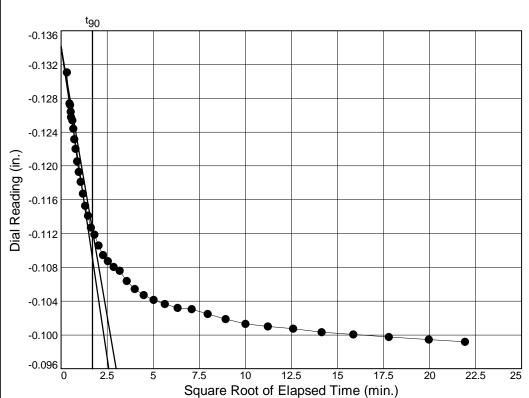
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 22.0-24.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 6

Load=4.00 tsf

 $D_0 = -0.1736$


 $D_{90} = -0.1572$

 $D_{100} = -0.1554$

 $T_{90} = 2.11 \text{ min.}$

 $C_v @ T_{90}$

0.863 ft.²/day

-Terracon Consultants, Inc.-

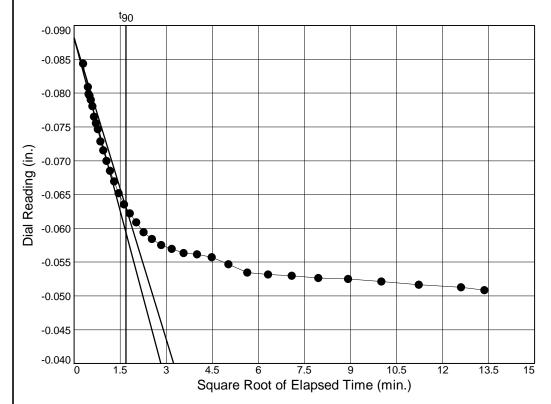
Load No.= 7

Load=8.00 tsf

 $D_0 = -0.1341$

 $D_{90} = -0.1123$

 $D_{100} = -0.1099$


 $T_{90} = 2.91 \text{ min.}$

C_v @ T₉₀

0.572 ft.2/day

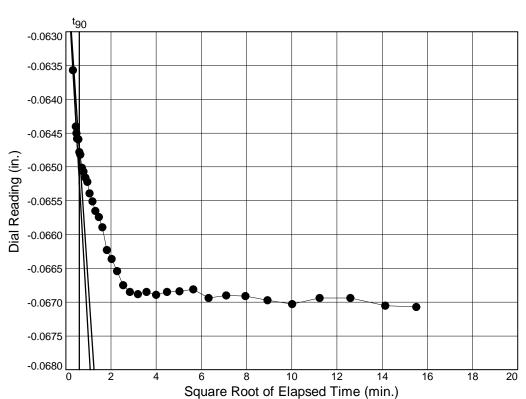
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 22.0-24.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 8

Load=16.00 tsf

 $D_0 = -0.0882$


 $D_{90} = -0.0630$

 $D_{100} = -0.0603$

 $T_{90} = 2.86 \text{ min.}$

C_v @ T₉₀

0.523 ft.²/day

-Terracon Consultants, Inc.-

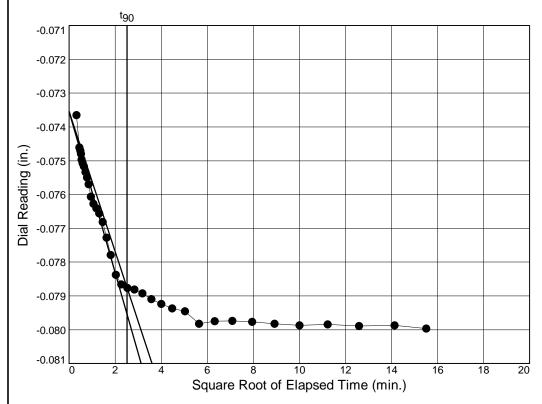
Load No.= 9

Load=4.00 tsf

 $D_0 = -0.0618$

 $D_{90} = -0.0648$

 $D_{100} = -0.0651$


 $T_{90} = 0.36 \text{ min.}$

C_v @ T₉₀

3.978 ft.2/day

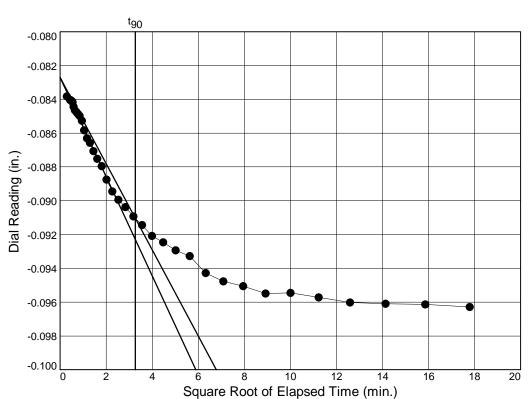
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 22.0-24.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 10

Load=1.00 tsf

 $D_0 = -0.0736$


 $D_{90} = -0.0788$

 $D_{100} = -0.0793$

 $T_{90} = 6.32 \text{ min.}$

 $C_v @ T_{90}$

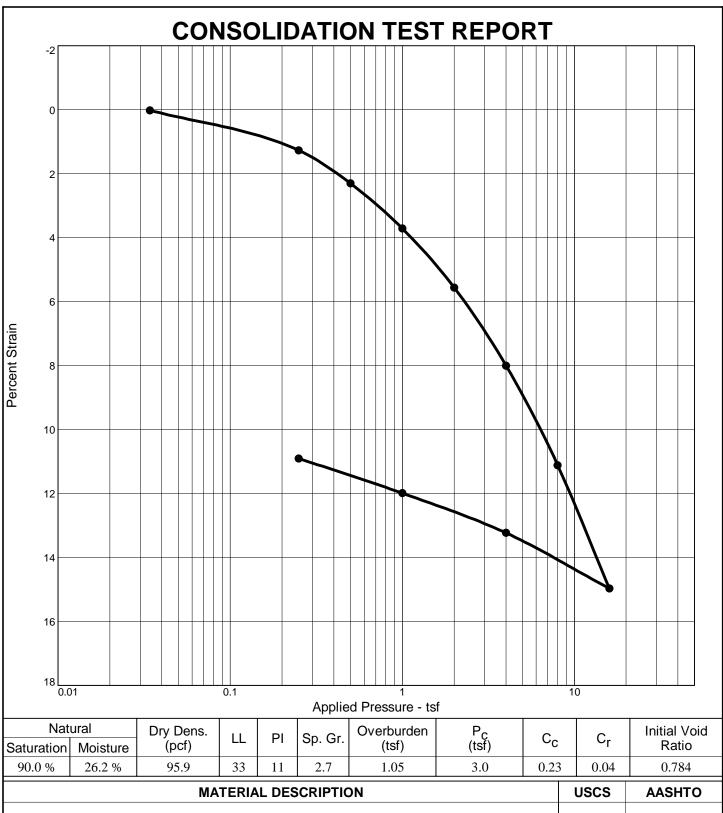
0.236 ft.²/day

-Terracon Consultants, Inc.-

Load No.= 11

Load=0.25 tsf

 $D_0 = -0.0827$


 $D_{90} = -0.0910$

 $D_{100} = -0.0920$

 $T_{90} = 10.66 \text{ min.}$

 $C_v @ T_{90}$

0.145 ft.2/day

MATERIAL DESCRIPTION	USCS	AASHTO
lean clay with sand (CL)	CL	A-6(6)

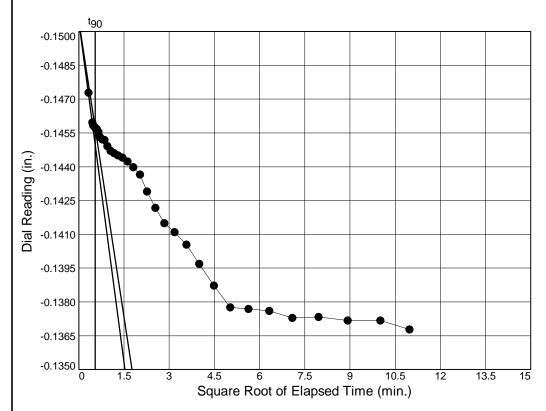
Remarks:

Swell pressure of 68.24 psf

Project No. E2175151 Client: CDM Smith, Inc

Project: DuPont Additional Borings

Source of Sample: B-104


Depth: 20.0-22.0 ft Sample Number: N/A

Terracon Consultants, Inc.

Chattanooga, TN

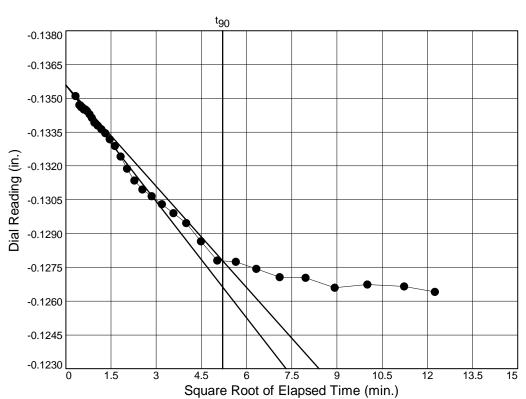
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 20.0-22.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 2

Load=0.25 tsf

 $D_0 = -0.1505$


 $D_{90} = -0.1457$

 $D_{100} = -0.1452$

 $T_{90} = 0.29 \text{ min.}$

 $C_v @ T_{90}$

7.162 ft.²/day

-Terracon Consultants, Inc.-

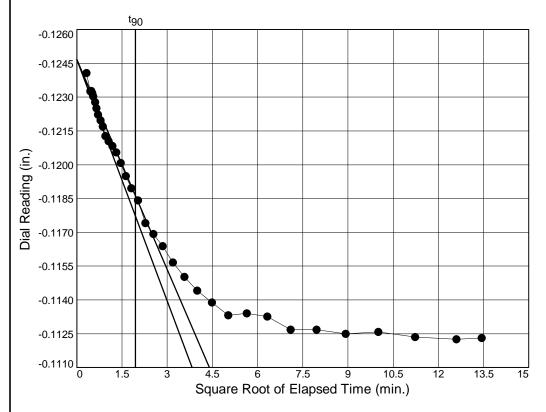
Load No.= 3

Load=0.50 tsf

 $D_0 = -0.1356$

 $D_{90} = -0.1278$

 $D_{100} = -0.1269$


 $T_{90} = 27.07 \text{ min.}$

C_v @ T₉₀

0.076 ft.2/day

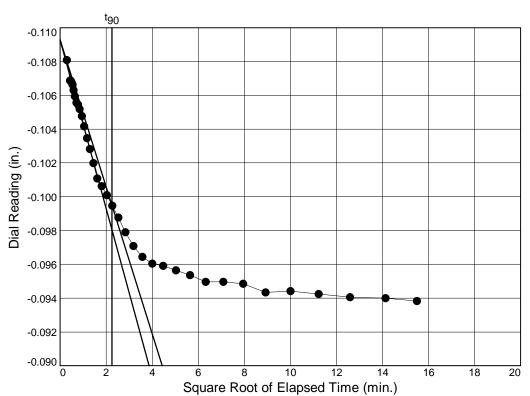
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 20.0-22.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 4

Load=1.00 tsf

 $D_0 = -0.1247$


 $D_{90} = -0.1186$

 $D_{100} = -0.1179$

 $T_{90} = 3.79 \text{ min.}$

C_v @ T₉₀

0.526 ft.²/day

-Terracon Consultants, Inc.-

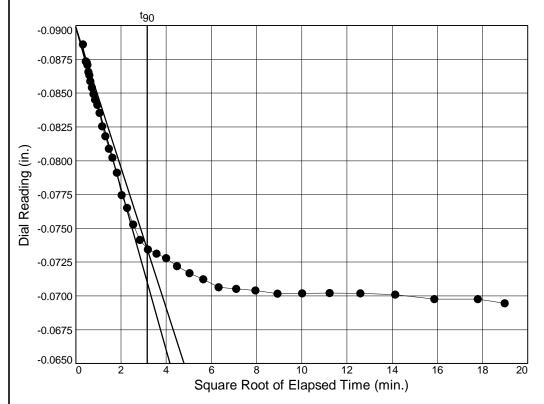
Load No.= 5

Load=2.00 tsf

 $D_0 = -0.1093$

 $D_{90} = -0.0995$

 $D_{100} = -0.0984$


 $T_{90} = 5.07 \text{ min.}$

C_v @ T₉₀

0.380 ft.2/day

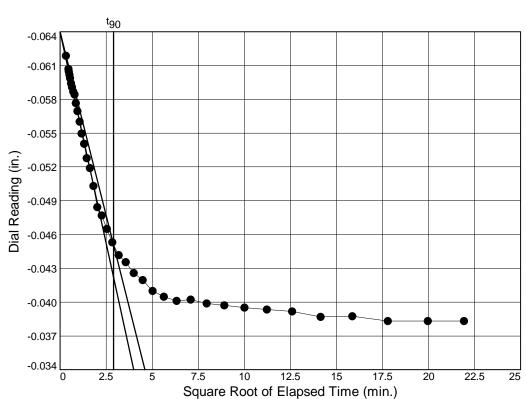
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 20.0-22.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 6

Load=4.00 tsf

 $D_0 = -0.0899$


 $D_{90} = -0.0735$

 $D_{100} = -0.0717$

 $T_{90} = 9.95 \text{ min.}$

 $C_v @ T_{90}$

0.185 ft.²/day

-Terracon Consultants, Inc.-

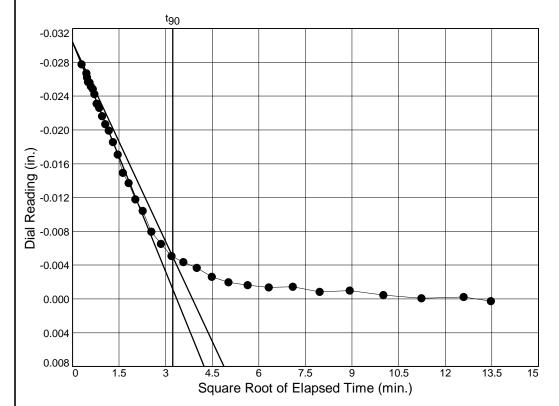
Load No.= 7

Load=8.00 tsf

 $D_0 = -0.0640$

 $D_{90} = -0.0451$

 $D_{100} = -0.0430$


 $T_{90} = 8.40 \text{ min.}$

C_v @ T₉₀

0.206 ft.2/day

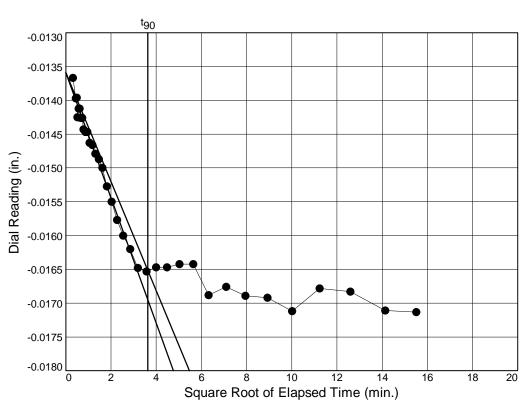
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 20.0-22.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 8

Load=16.00 tsf

 $D_0 = -0.0304$


 $D_{90} = -0.0050$

 $D_{100} = -0.0022$

 $T_{90} = 10.39 \text{ min.}$

 $C_v @ T_{90}$

0.154 ft.²/day

-Terracon Consultants, Inc.-

Load No.= 9

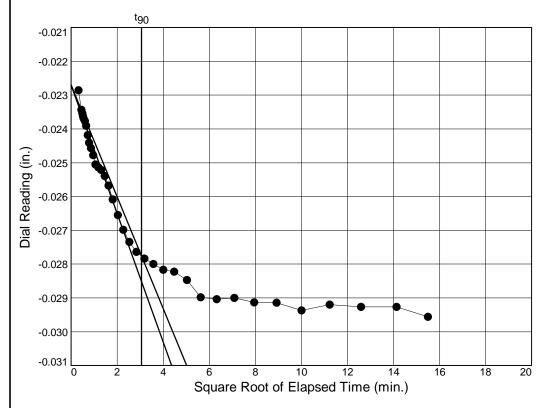
Load=4.00 tsf

 $D_0 = -0.0136$

 $D_{90} = -0.0165$

 $D_{100} = -0.0168$

 $T_{90} = 13.20 \text{ min.}$


C_v @ T₉₀

0.118 ft.2/day

Dial Reading vs. Time

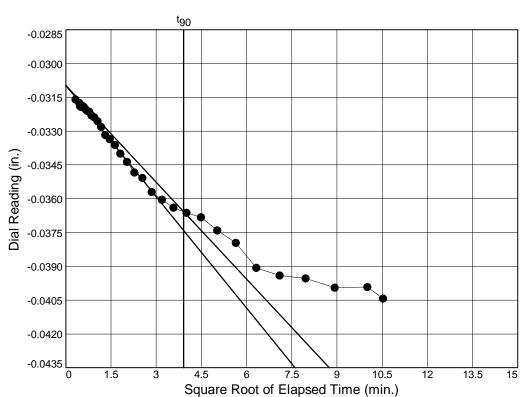
Project No.: E2175151 Project: DuPont Additional Borings

Depth: 20.0-22.0 ft Sample Number: N/A Source of Sample: B-104

Load No.= 10

Load=1.00 tsf

 $D_0 = -0.0227$


 $D_{90} = -0.0278$

 $D_{100} = -0.0283$

 $T_{90} = 9.38 \text{ min.}$

 $C_v @ T_{90}$

0.173 ft.²/day

-Terracon Consultants, Inc.-

Load No.= 11

Load=0.25 tsf

 $D_0 = -0.0310$

 $D_{90} = -0.0366$

 $D_{100} = -0.0372$

 $T_{90} = 15.30 \text{ min.}$

C_v @ T₉₀

0.109 ft.2/day

Report of Compressive Strength of Rock Core Specimens

Project: DuPont Additional Borings Date: 8/31/2018

Project No.: <u>E2175151</u>

Specimen	Wet		Dry	Total Load	Correction	Compressive Strength
ID	PCF	% Moisture	PCF	(lbs)	Factor	(lbs./in.²)
B-101	145.0	0.0	145.0	55,700	1.000	18,200
B-104	156.0	0.0	156.0	57,860	1.000	18,925
B-108	160.7	0.0	160.7	55,690	1.000	18,105

Remarks:			_

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Add	illonal Doni	igs						
Date:	Date: 9/4/2018			Pan	el Number :	P-1	-		
Project No. :	E2175151				Pe	rmometer Da	ata		
Boring No.:	B-101		a _p =	0.031416	cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	N/A		a _a =	0.767120	cm ²	beginning	Pipet Rp	12.3	cm ³
Depth (ft):	36.1-41.1		$M_1 =$	0.030180	C =	0.000612	Annulus Ra	1.2	cm ³
Other Location:	N/A		$M_2 =$	1.040953	T =	0.0931418			
Material Des	cription :	Rock Core							
				SAMPLE	DATA				
Wet Wt. sam	nple + ring or	tare :	266.71	g					
Tare or ring		•	0.0	g		Before	e Test	After	Test
Wet Wt: of S	Sample :		266.71	g	_	Tare No.:	X	Tare No.:	
Diameter :		in	5.01	cm ²		Wet Wt.+tare:	1.00	Wet Wt.+tare:	
Length:		in · · · ·	5.03	cm	•	Dry Wt.+tare:	1.00	Dry Wt.+tare:	
Area:		in^2	19.68	cm ²		Tare Wt:	0.00	Tare Wt:	
Volume :		in^3	99.00	cm ³		Dry Wt.:	1	_Dry Wt.:	
Unit Wt.(wet):		pcf	2.69	g/cm ^{^3} g/cm ^{^3}		Water Wt.:	0	Water Wt.:	-
Unit Wt.(dry):	168.11	pcf	2.69	g/cm		% moist.:	0.0	_% moist.:	
Assumed S	pecific Gravity:	2.70	Max Dry D	ensity(pcf) =		OMC =		_	
Coloulated 0/	ooturation		Void	% of max =		+/- OMC =		_	
Calculated %	saturation.		void i	atio (e) =		Porosity (n)=		_	
		Tes	t Pressure	s During Hyd	Iraulic Con	ductivity Te	st		
Cell Pres	ssure (psi) =	Tes 55.00		s During Hydessure (psi) =		-	st Pressure =	5.00	psi
Cell Pres	ssure (psi) =			essure (psi) =	50.00	Confining	Pressure =	= 5.00 ective Confining	•
		55.00	Back Pre	essure (psi) =	50.00 ADINGS	Confining Note: The abov	Pressure = re value is Effe		•
	ssure (psi) =	55.00		essure (psi) =	50.00	Confining Note: The abov	Pressure =		•
Z ₁ (Mercury F	Height Differe	55.00 ence @ t ₁):	Back Pre	TEST REA	50.00 ADINGS Hydraulic (Confining Note: The abov Gradient =	Pressure = ye value is Effe		•
	Height Differe	55.00 ence @ t ₁):	Back Pro	ressure (psi) = TEST REA cm temp	50.00 ADINGS Hydraulic 0 a	Confining Note: The abov Gradient = k	Pressure = re value is Effe	ective Confining	•
Z ₁ (Mercury F	Height Differe elapsed t (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	TEST REA	50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = ye value is Effect 28.00 k (ft./day)	ective Confining Reset = *	•
Z ₁ (Mercury F Date 9/4/2018	Height Differe elapsed t (seconds) 600	55.00 ence @ t ₁): Z (pipet @ t) 12.25	11.2 DZp (cm) 0.086314	temp (deg C) 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09	Pressure = 28.00 k (ft./day) 2.28E-05	Reset = *	•
Z₁(Mercury F	elapsed t (seconds) 600 1200	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro	TEST REA	50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = ye value is Effect 28.00 k (ft./day)	Reset = *	•
Z ₁ (Mercury F Date 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2	11.2 DZp (cm) 0.086314 0.136314	temp (deg C)	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09	Pressure = ye value is Effect 28.00 k (ft./day) 2.28E-05 1.80E-05	Reset = *	•
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15	11.2 DZp (cm) 0.086314 0.136314 0.186314	temp (deg C) 21 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient =	Pressure = re value is Effective 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05	Reset = *	•
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1	11.2 DZp (cm) 0.086314 0.136314 0.186314	temp (deg C) 21 21 21 SUMM.	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 ARY	Confining Note: The abov Gradient =	Pressure = re value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.57E-05	Reset = *	•
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki	DZp (cm) 0.086314 0.136314 0.236314 6.44E-09	temp (deg C) 21 21 21 SUMM.	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 ARY Vm	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance	Pressure = re value is Effective value va	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09	temp (deg C) 21 21 21 21 SUMM. cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 ARY Vm 24.9	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.57E-05	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 6.36E-09	temp (deg C) 21 21 21 21 SUMM. cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % %	Pressure = re value is Effective value va	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09	temp (deg C) 21 21 21 21 SUMM. cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2 9.7	Confining Note: The above Bradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % %	Pressure = re value is Effective value va	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 6.36E-09	temp (deg C) 21 21 21 21 SUMM. cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % %	Pressure = re value is Effective value va	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 3 600 3 1200 3 1800 3 2400	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.1 12.1 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09 5.54E-09	temp (deg C) 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2 9.7 13.9	Confining Note: The abov Bradient = k (cm/sec) 8.04E-09 6.36E-09 5.54E-09 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.1 12.1 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09	temp (deg C) 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 6.44E-09	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2 9.7	Confining Note: The above Bradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 3 600 3 1200 3 1800 3 2400	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.1 12.1 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.086314 0.136314 0.136314 0.236314 6.44E-09 8.04E-09 5.81E-09 5.54E-09	temp (deg C) 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec 6.44E-09	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 24.9 1.2 9.7 13.9	Confining Note: The abov Bradient = k (cm/sec) 8.04E-09 6.36E-09 5.54E-09 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800 2400 Hydraulic co	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.1 12.15 12.1 ka = ki k1 = k2 = k3 = k4 = conductivity	DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 5.81E-09 5.54E-09	temp (deg C) 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec 6.44E-09	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 24.9 1.2 9.7 13.9 cm/sec	Confining Note: The abov Bradient = k (cm/sec) 8.04E-09 6.36E-09 5.54E-09 Acceptance % % % %	Pressure = re value is Effective value val	Reset = *	Pressure
Z ₁ (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	elapsed t (seconds) 600 1200 1800 2400 Hydraulic co	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.1 12.15 12.1 ka = ki k1 = k2 = k3 = k4 = expendent with the conductivity y ent	Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.186314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09 5.54E-09	temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 ARY Vm 24.9 1.2 9.7 13.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % % % 1.83E-05	Pressure = re value is Effect 28.00	Reset = *	Pressure

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Additional Borin	igs						
Date:	9/4/2018		Pane	el Number :	P-1	_		
Project No.:	E2175151				rmometer Da	ata		
Boring No.:	B-104	a _p =	0.031416	cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	N/A	a _a =	0.767120	cm ²	beginning	Pipet Rp	12.5	cm ³
Depth (ft):	28.2-30.0	$M_1 =$	0.030180	C =	0.00062	Annulus Ra	1.2	cm ³
Other Location:	N/A	$M_2 =$	1.040953	T =	0.0919346			
Material Des	scription: Rock Core							
			SAMPLE	DATA				
Wet Wt_sam	nple + ring or tare :	273.13	g					
Tare or ring		0.0	g		Before	e Test	After	Test
Wet Wt: of S		273.13	g		Tare No.:	Χ	Tare No.:	
Diameter :	1.97 in	5.01	cm ²	•	Wet Wt.+tare:	1.00	Wet Wt.+tare:	
Length:	2.01 in	5.10	cm	_	Dry Wt.+tare:	1.00	Dry Wt.+tare:	
Area:	3.05 in^2	19.68	cm ²		Tare Wt:	0.00	Tare Wt:	
Volume :	6.12 in^3	100.30	cm ³		Dry Wt.:	1	Dry Wt.:	
Unit Wt.(wet):	169.93 pcf	2.72	g/cm ^{^3}		Water Wt.:	0	Water Wt.:	
Unit Wt.(dry):	169.93 pcf	2.72	g/cm ^{^3}		% moist.:	0.0	_% moist.:	
Assumed S	Specific Gravity: 2.70	Max Dry D	ensity(pcf) =		OMC =		_	
Calculated %			% of max = atio (e) =		+/- OMC = Porosity (n)=		_	
Cell Pres	Tes ssure (psi) = 55.00		s During Hydessure (psi) =	Iraulic Con 50.00	-	st Pressure =	5.00	
00111100	30010 (poi) = 00.00	Baokiik	- (poi)				= 500	nsı
				00.00	•		= 5.00 ective Confining	psi Pressure
			TEST REA		•			•
Z₁(Mercury I	Height Difference @ t ₁):	11.3	TEST REA		Note: The abov			•
Z₁(Mercury I Date	Height Difference $@$ t_1):	11.3 DZp		ADINGS	Note: The abov	e value is Effe		•
Date	elapsed t Z (seconds) (pipet @ t)	DZp (cm)	cm temp (deg C)	ADINGS Hydraulic (a (temp corr)	Note: The abov Gradient = k (cm/sec)	28.00 k (ft./day)	ective Confining Reset = *	•
Date 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35	DZp (cm) 0.127296	temp (deg C) 21	ADINGS Hydraulic (a (temp corr) 0.977	Note: The abov Gradient = k (cm/sec) 1.19E-08	28.00 k (ft./day) 3.37E-05	Reset = *	•
Date 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 600 12.35 1200 12.3	DZp (cm) 0.127296 0.177296	temp (deg C) 21 21	ADINGS Hydraulic (a (temp corr) 0.977 0.977	Note: The abov Gradient =	28.00 k (ft./day) 3.37E-05 2.35E-05	Reset = *	•
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25	DZp (cm) 0.127296 0.177296 0.227296	temp (deg C) 21 21 21	ADINGS Hydraulic (a (temp corr) 0.977 0.977	Note: The abov Gradient =	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05	Reset = *	•
Date 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 600 12.35 1200 12.3 1800 12.25	DZp (cm) 0.127296 0.177296	temp (deg C) 21 21	ADINGS Hydraulic (a (temp corr) 0.977 0.977	Note: The abov Gradient =	28.00 k (ft./day) 3.37E-05 2.35E-05	Reset = *	•
Date 9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 600 12.35 1200 12.3 1800 12.25	DZp (cm) 0.127296 0.177296 0.227296	temp (deg C) 21 21 21	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Note: The abov Gradient =	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05	Reset = *	•
Date 9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 Ka =	DZp (cm) 0.127296 0.177296 0.227296	temp (deg C) 21 21 21 21 21 SUMM	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Note: The abov Gradient =	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05	Reset = *	•
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 Ka = ki	DZp (cm) 0.127296 0.177296 0.227296 0.277296	temp (deg C) 21 21 21 21 21 SUMM/	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm	Rote: The above Acceptance	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09	temp (deg C) 21 21 21 21 21 SUMM/cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 ARY Vm 40.6	Note: The above Acceptance %	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki k1 = k2 =	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 Vm 40.6 1.8	Note: The above Acceptance % % %	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 40.6 1.8 15.9	Note: The above Acceptance % % % % %	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	Reset = *	Pressure
Date 9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 Vm 40.6 1.8	Note: The above Acceptance % % % % % %	28.00 k (ft./day) 3.37E-05 2.35E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki ki k1 = k2 = k3 = k4 = Hydraulic conductivity	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 40.6 1.8 15.9	Note: The above Acceptance % % % % %	28.00 k (ft./day) 3.37E-05 2.35E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki ki k1 = k2 = k3 = k4 = Hydraulic conductivity Void Ratio	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec sec cm/sec sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 40.6 1.8 15.9 22.9	Note: The above Acceptance % % % % % %	28.00 k (ft./day) 3.37E-05 2.35E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure
Date 9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki ki k1 = k2 = k3 = k4 = Hydraulic conductivity Void Ratio Porosity	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec sec cm/sec sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 Vm 40.6 1.8 15.9 22.9 cm/sec	Note: The above Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki k1 = k2 = k3 = k4 = Hydraulic conductivity Void Ratio Porosity Bulk Density	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09	temp (deg C) 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 4RY Vm 40.6 1.8 15.9 22.9 cm/sec	Note: The above Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05 169.9	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure
9/4/2018 9/4/2018 9/4/2018	elapsed t Z (seconds) (pipet @ t) 3 600 12.35 3 1200 12.3 3 1800 12.25 3 2400 12.2 ka = ki ki k1 = k2 = k3 = k4 = Hydraulic conductivity Void Ratio Porosity	DZp (cm) 0.127296 0.177296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09	temp (deg C) 21 21 21 21 21 SUMM/ cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 Vm 40.6 1.8 15.9 22.9 cm/sec	Note: The above Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05	28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm =	Reset = *	Pressure

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Addition					5.4			
Date: 9/4/2018				Pane	el Number :		-		
-	E2175151					rmometer Da	ata T		3
oring No.:	B-108		$a_p =$		_	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	N/A		a _a =	0.767120	cm ²	beginning	Pipet Rp	12.4	cm ³
Pepth (ft):	33.6-39.6		$M_1 =$	0.030180	C =	0.0006129	Annulus Ra	1.2	cm ³
ther Location:	N/A		$M_2 =$	1.040953	T =	0.0930009			
Material Des	scription: Ro	ock Core							
				SAMPLE	DATA				
Vet Wt. san	nple + ring or ta	ıre :	267.89	g					
are or ring		-	0.0	g		Before	e Test	After	Test
et Wt: of S		-	267.89	g	-	Tare No.:	X	Tare No.:	
iameter:	1.97in		5.01	cm ²		Wet Wt.+tare:	1.00	Wet Wt.+tare:	
ength:	1.98 in		5.04	cm		Dry Wt.+tare:	1.00	Dry Wt.+tare:	
rea:	3.05 in^	^2	19.68	cm ²		Tare Wt:	0.00	_Tare Wt:	
olume :	6.05 in^	^ 3	99.15	cm ³		Dry Wt.:	1	_Dry Wt.:	
nit Wt.(wet):		f .	2.70	g/cm ^{^3}		Water Wt.:	0	Water Wt.:	
nit Wt.(dry):	168.60 pc	f .	2.70	g/cm ^{^3}		% moist.:	0.0	_ % moist.:	
Assumed S	Specific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC = +/- OMC =		_	
	6 saturation:		t Pressure	atio (e) = s During Hyd		Porosity (n)=	st	-	:
	% saturation:	Tes 55.00	t Pressure	atio (e) = s During Hydeessure (psi) =	50.00	Porosity (n)= ductivity Tes Confining	st Pressure =	= 5.00 ective Confining	psi Pressure
Cell Pres		55.00	t Pressure	atio (e) = s During Hyd	50.00	Porosity (n)= ductivity Tes Confining Note: The abov	st Pressure =		•
Cell Pres	ssure (psi) = Height Differenc	55.00 ce @ t ₁):	t Pressure Back Pre	atio (e) = s During Hydessure (psi) = TEST REA	50.00 ADINGS Hydraulic (Porosity (n)= ductivity Test Confining Note: The abov Gradient =	st Pressure = re value is Effe 28.00		•
Cell Pres	ssure (psi) = Height Difference elapsed t	55.00 ce @ t ₁): Z	t Pressure Back Pre	atio (e) = s During Hydessure (psi) = TEST REA cm temp	50.00 ADINGS Hydraulic 0	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k	st Pressure = re value is Effe 28.00	ective Confining	•
Cell Pres (Mercury I	ssure (psi) = Height Difference elapsed t (seconds) (p	55.00 ce @ t ₁): Z pipet @ t)	t Pressure Back Pre	atio (e) = s During Hydessure (psi) = TEST REA cm temp (deg C)	50.00 ADINGS Hydraulic (a (temp corr)	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec)	st Pressure = re value is Effe 28.00 k (ft./day)	ective Confining Reset = *	•
Cell Pres (Mercury I Date 9/4/2018	ssure (psi) = Height Difference elapsed t (seconds) (p	55.00 ce @ t ₁): Z cipet @ t) 12.35	11.2 DZp (cm) 0.002581	atio (e) = s During Hydessure (psi) = TEST REA cm temp (deg C) 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07	ective Confining Reset = *	•
Cell Pres (Mercury F Date 9/4/2018 9/4/2018	ssure (psi) = Height Difference elapsed t (seconds) (psi)	55.00 ce @ t ₁): Z pipet @ t) 12.35 12.3	11.2 DZp (cm) 0.002581 0.052581	atio (e) = s During Hydessure (psi) = TEST REA cm temp (deg C) 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06	Reset = *	•
Cell Pres (Mercury I Date 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 ce @ t ₁): Z cipet @ t) 12.35	11.2 DZp (cm) 0.002581	atio (e) = s During Hydessure (psi) = TEST REA cm temp (deg C) 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07	Reset = *	•
Cell Pres 1(Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 ce @ t ₁): Z pipet @ t) 12.35 12.3 12.25	11.2 DZp (cm) 0.002581 0.102581	atio (e) = s During Hydeessure (psi) = TEST REA cm temp (deg C) 21 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06	Reset = *	•
Cell Pres (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 The (a) t ₁): Zhippet (a) t ₁ 12.35 12.3 12.25 12.2 Ka =	11.2 DZp (cm) 0.002581 0.102581	atio (e) = s During Hyd essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	•
Cell Pres (Mercury Final Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 ce @ t ₁): Z pipet @ t) 12.35 12.3 12.25 ka = ki	DZp (cm) 0.002581 0.052581 0.102581 2.36E-09	atio (e) = s During Hyde essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 ARY Vm	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	st Pressure = re value is Effect 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	Pressure
Cell Pres 1(Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 The (a) t ₁): Zhippet (a) t ₁ 12.35 12.3 12.25 12.2 Ka = ki ki k1 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09	atio (e) = s During Hyde essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	Pressure
Cell Pres (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 ce @ t ₁): Z pipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09	atio (e) = s During Hyde essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8 3.6	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % %	st Pressure = re value is Effect 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	Pressure
Cell Pres (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 Ce @ t ₁): Z Dipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09	atio (e) = s During Hydeessure (psi) = TEST REACT temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 Vm 89.8 3.6 35.1	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % %	st Pressure = re value is Effect 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	Pressure
Cell Pres (Mercury F Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 ce @ t ₁): Z pipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09	atio (e) = s During Hydeessure (psi) = TEST REACT temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8 3.6	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % %	st Pressure = re value is Effect 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	Pressure
Cell Pres (Mercury Final Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800 3 2400	55.00 Ce @ t ₁): Z Dipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09	atio (e) = s During Hydeessure (psi) = TEST REACT temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8 3.6 35.1 51.1	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % %	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	Reset = *	Pressure
Cell Pres 1(Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) (p 3 600 3 1200 3 1800	55.00 Ce @ t ₁): Z Dipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09	atio (e) = s During Hydeessure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 Vm 89.8 3.6 35.1	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % %	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	Reset = *	Pressure
Cell Pres (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Hydraulic cond	55.00 Ce @ t ₁): Z Dipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09	atio (e) = s During Hydeessure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec 2.36E-09	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8 3.6 35.1 51.1	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % %	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	Reset = *	Pressure
Cell Pres (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Hydraulic cond	55.00 Ce @ t ₁): Z Dipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09	atio (e) = s During Hydeessure (psi) = TEST REA cm temp (deg C) 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 4RY Vm 89.8 3.6 35.1 51.1	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % %	st Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	Reset = *	Pressure
Cell Pres (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Hydraulic cond Void Ratio Porosity	55.00 The (a) t ₁ (b): The (a) t ₁ (c): The (a) t ₂ (c): The (a) t ₁ (c): The (a) t ₂ (c): The (a	t Pressure Back Pre 11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09	atio (e) = s During Hyd essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMMA cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec 2.36E-09	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 Vm 89.8 3.6 35.1 51.1 cm/sec	Porosity (n)= ductivity Test Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % % 6.69E-06	st Pressure = ve value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 1.01E-05 criteria = Vm =	Reset = *	Pressure

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DuPont Additional Borings ☐ Chattanooga, Tennessee
October 26, 2018 ☐ Terracon Project No. E2175151

SAMPLING	WATER LEVEL		FIELD TESTS
	_ <u></u> Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Rock Core Shelby	Water Level After a Specified Period of Time	(HP)	Hand Penetrometer
	Water Level After a Specified Period of Time	(T)	Torvane
Standard Penetration Test	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times	(DCP)	Dynamic Cone Penetrometer
	indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not	UC	Unconfined Compressive Strength
	possible with short term water level observations.	(PID)	Photo-Ionization Detector
		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

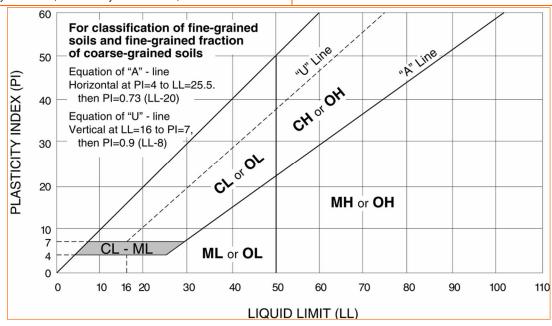
	STRENGTH TERMS							
RELATIVE DENSITY	OF COARSE-GRAINED SOILS	CONSISTENCY OF FINE-GRAINED SOILS						
	(More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance		(50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual- procedures or standard penetration resistance					
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (tsf)	Standard Penetration or N-Value Blows/Ft.				
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1				
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4				
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8				
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15				
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30				
		Hard	> 4.00	> 30				

RELATIVE PROPORTION	S OF SAND AND GRAVEL	RELATIVE PROPORTIONS OF FINES		
Descriptive Term(s) of other constituents	Percent of Dry Weight	Descriptive Term(s) of other constituents	Percent of Dry Weight	
Trace	<15	Trace	<5	
With	15-29	With	5-12	
Modifier	>30	Modifier	>12	
GRAIN SIZE T	ERMINOLOGY	PLASTICITY DESCRIPTION		
Major Component of Sample	Particle Size	Term	Plasticity Index	
Boulders	Over 12 in. (300 mm)	Non-plastic	0	
Cobbles	12 in. to 3 in. (300mm to 75mm)	Low	1 - 10	
Gravel	3 in. to #4 sieve (75mm to 4.75 mm)	Medium	11 - 30	
01		I II ada	> 30	
Sand	#4 to #200 sieve (4.75mm to 0.075mm	High	- 30	

UNIFIED SOIL CLASSIFICATION SYSTEM

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee

October 26, 2018 Terracon Project No. E2175151


					S	Soil Classification
Criteria for Assigni	ng Group Symbols	and Group Names	Using Laboratory	Γests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 E		GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
	coarse fraction	Gravels with Fines:	Fines classify as ML or N	ИΗ	GM	Silty gravel F, G, H
Coarse-Grained Soils: More than 50% retained	retained on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or C	H	GC	Clayey gravel F, G, H
on No. 200 sieve	Sands:	Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 E		SW	Well-graded sand
	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3	E	SP	Poorly graded sand I
	fraction passes No. 4	Sands with Fines: Fines classify as ML or MH		ИΗ	SM	Silty sand G, H, I
	sieve	More than 12% fines D	Fines classify as CL or CH		SC	Clayey sand G, H, I
		Inorganic:	PI > 7 and plots on or above "A"		CL	Lean clay ^K , ^L , ^M
	Silts and Clays:	morganic.	PI < 4 or plots below "A" line J		ML	Silt K, L, M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay K, L, M, N
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	< 0.75	OL	Organic silt K, L, M, O
No. 200 sieve		Inorgania	PI plots on or above "A"	line	CH	Fat clay ^{K, L, M}
	Silts and Clays:	Inorganic:	PI plots below "A" line		MH	Elastic Silt K, L, M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	< 0.75	ОН	Organic clay K, L, M, P
		Organic.	Liquid limit - not dried	< 0.75	ОП	Organic silt K, L, M, Q
Highly organic soils:	Primarily	organic matter, dark in co	olor, and organic odor		PT	Peat

- A Based on the material passing the 3-inch (75-mm) sieve
- B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

E
$$Cu = D_{60}/D_{10}$$
 $Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}}$

- F If soil contains ³ 15% sand, add "with sand" to group name.
- ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- HIf fines are organic, add "with organic fines" to group name.
- If soil contains ³ 15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay. J
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- $^{\mbox{\scriptsize M}}\mbox{If soil contains }^{3}$ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- NPI 3 4 and plots on or above "A" line.
- OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^QPI plots below "A" line.

DESCRIPTION OF ROCK PROPERTIES

DuPont Gravity Sewer and Pump Station ■ Chattanooga, Tennessee
October 26, 2018 ■ Terracon Project No. E2175151

	WEATHERING
Term	Description
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.

STRENGTH OR HARDNESS						
Description	Field Identification	Uniaxial Compressive Strength, psi (MPa)				
Extremely weak	Indented by thumbnail	40-150 (0.3-1)				
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)				
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)				
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)				
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)				
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)				
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)				

	DISCONTINUITY DESCRIPTION								
Fracture Spacing (Joint	s, Faults, Other Fractures)	Bedding Spacing (May Include Foliation or Banding)							
Description	Spacing	Description	Spacing						
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)						
Very close	3/4 in - 2-1/2 in (19 - 60 mm)	Very thin	½ in – 2 in (12 – 50 mm)						
Close	2-1/2 in – 8 in (60 – 200 mm)	Thin	2 in – 1 ft. (50 – 300 mm)						
Moderate	8 in – 2 ft. (200 – 600 mm)	Medium	1 ft. – 3 ft. (300 – 900 mm)						
Wide	2 ft. – 6 ft. (600 mm – 2.0 m)	Thick	3 ft. – 10 ft. (900 mm – 3 m)						
Very Wide	6 ft. – 20 ft. (2.0 – 6 m)	Massive	> 10 ft. (3 m)						

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

ROCK QUALITY DESIGNATION (RQD) 1						
Description	RQD Value (%)					
Very Poor	0 - 25					
Poor	25 – 50					
Fair	50 – 75					
Good	75 – 90					
Excellent	90 - 100					

The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference:

U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 Technical Manual for Design and Construction of Road Tunnels — Civil Elements

Appendix B

Report for Geophysical Services

October 12, 2018

CDM Smith 4600 Park Rd #240 Charlotte, North Carolina 28209

Attention: Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference: Report for Geophysical Services

DuPont Pump Station and Basin Improvements Phase 2

Chattanooga, Tennessee S&ME Project No. 1281-18-061

Dear Mr. Tastan:

S&ME, Inc. (S&ME) has performed geophysical services at the above referenced site located in Chattanooga, Tennessee. These services were performed in general accordance with S&ME Proposal No. 121800346 dated August 15, 2018.

Project Information

CDM Smith is performing consulting services for a proposed new pump station facility within the existing boat ramp area located on Dixie Drive in Chattanooga, Tennessee (**Figure 1**). During the test boring program conducted by CDM Smith for the proposed facility, an approximate 11-foot vertical void was encountered in one of the borings (B-108). Depth to the top of rock at B-108 is about 33 feet below ground surface (bgs) with the encountered top of the void at about 45 feet bgs. The water table is just above the soil/rock interface, so the void is anticipated to be water-filled. The site is mostly covered by asphalt pavement with two sewer utilities (30 inch and 36 inches in diameter) running east-west across the site at about 5 feet bgs and electrical lines for the existing light poles. CDM Smith requested S&ME provide geophysical services within the areas of the proposed facility in an effort to identify potential karst features such as voids, bedrock joints/fractures, etc.

Methodology and Field Services

On October 3 and 4, 2018, S&ME completed an Electrical Resistivity Tomography (ERT) survey within the accessible portions of the site. ERT is an active geophysical technique that involves the introduction of a known amount of current into the ground and measuring the response in order to identify variations in subsurface electrical potentials. By introducing a known amount of current into the ground, the measured voltage potential at the surface is used to calculate the resistivity of a particular volume of subsurface media.

In general, clayey and moist soils result in lower resistivity (higher conductivity) readings, while dry sands, gravels, chert, and competent limestone/dolomite exhibit higher resistivity values. The resistivity of materials also partially depends on the substance filling its pore or void space. If a cavity or fracture is air-filled, a highly resistive anomaly within the limestone/dolomite unit is expected. If it is water- or clay-filled, an anomaly more conductive than the surrounding limestone/dolomite unit is expected. Natural variations in porosity and grain size

Chattanooga, Tennessee S&ME Project No. 1281-18-061

distribution can also cause such anomalies. It is important to note that actual ground resistivity is not collected during a resistivity survey. The survey is used to collect the apparent resistivity of a volume of material that is dependent upon electrode spacing. Actual resistivities are later determined through a data inversion process.

The ERT method requires that a series of small current and potential stainless-steel electrodes be inserted into the ground and data collected using various array configurations (Dipole-Dipole, Wenner, etc.). The electrodes are connected to a transmitter/recording instrument (resistivity meter) that generates the induced current and stores the resulting measurements for later processing and analysis. The configuration of the collected data (array) is dependent on the objectives of the investigation (e.g., vertical soil and bedrock profiling, cavity detection, fracture mapping, etc.). ERT measurements are acquired from the voltage potential difference measured between two electrodes and are dependent upon the distance between the electrodes. Material included between the electrodes is essentially averaged. Therefore, limitations of this method exist dependent upon the resolution of data acquisition needed versus the depth of a target.

We used an AGI SuperStingTM R8/IP resistivity system configured with 56 electrodes in general accordance with ASTM D6431-99 (2010) "Using DC Resistivity for Subsurface Investigations". A total of three ERT profiles at 275 feet in length were collected at the site using the Dipole-Dipole array configuration (**Figure 2**). Line locations were generally based site access and to avoid potential influence from the existing buried utilities. However, the beginnings of Lines 2 and 3 were slightly shortened due to shallow interference identified during data processing which may be related to the buried electrical lines. Electrodes for each profile were spaced at 5 feet. Due to the presence of asphalt pavements, 1/2 inch diameter holes were required at each electrode location in order for the electrodes to be inserted directly into the underlying soils. Each hole was backfilled with a flowable asphalt sealant at the end of the survey. The ERT data was processed using AGI's EarthImager 2D software and Golden Software's Surfer® was used to grid and plot the data. Elevations used for our models were based on provided plans and not actual field survey measurements performed by S&ME and should be considered approximate. ERT data profiles are presented in **Figure 2**.

Results

The ERT results depicted in **Figure 2** indicate a varying resistivity contrast across the surveyed area that range from approximately 10 ohm-meters (ohm/m) to 200 ohm/m. Presented depths of the ERT profiles are at about 60 feet below ground surface (bgs).

- In general, the ERT profiles exhibit two layers (Layer 1 and 2). The upper Layer 1 is primarily characterized by conductive material less than about 50 ohm/m and the lower. Layer 2 generally consists of material greater than about 50 ohm/m with the interpreted upper surface about 5 to 15 feet bgs. Based on the provided borings, Layer 1 is related to the soil overburden and Layer 2 is related to limestone bedrock.
- Two anomalous subsurface features were also identified in the ERT data sets (Anomalies A and B).
- Anomaly A is characterized by a conductive area within the interpreted bedrock (Layer 2) and was
 identified along each of the three profiles. The east-west trending anomaly is consistent with possible
 water/clay-filled voids, joints, and/or fractures within the bedrock.
- Anomaly B appears to be generally characterized by a topographic low along the surface of the
 interpreted bedrock along Line 2. However, the interpreted bedrock within this feature also exhibits
 relatively lower resistivity values that may be related to water/clay-filled voids, joints, and/or fractures.

October 12, 2018 2

Chattanooga, Tennessee S&ME Project No. 1281-18-061

Limitations

The geophysical method used for this survey has inherent limitations. Buried site metallic features (e.g., utilities, etc.) and overhead transmission lines can produce excessive noise and/or false responses in ERT data. As such, ERT profile locations are generally positioned where possible influence is limited. Depth of exploration for an ERT survey is limited by the allowable length of the collected data profile. Limiting factors due to site constraints such as property boundaries, surficial obstructions, utilities, etc. can reduce profile lengths. Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of subsurface features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of subsurface features was based on our review of provided information and of the geophysical survey. Under no circumstances will S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

Closure

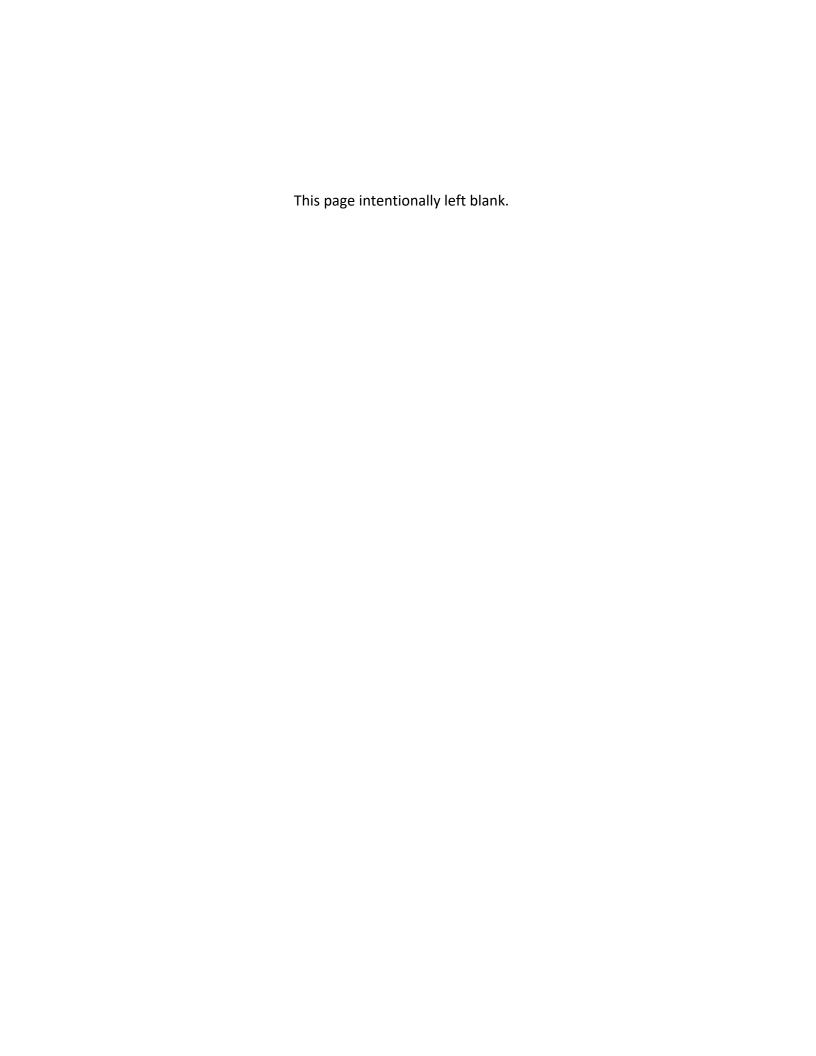
S&ME appreciates the opportunity to assist you during this phase of the project. If you should have any questions concerning this report or if we may be of further assistance, please contact us.

Sincerely,

S&ME, Inc.

Jason B. Cox, PG (GA)

Project Geophysicist


Kevin D. Hon, PG


Geophysical Group Leader

Attachments: Site Vicinity Map, Figure 1

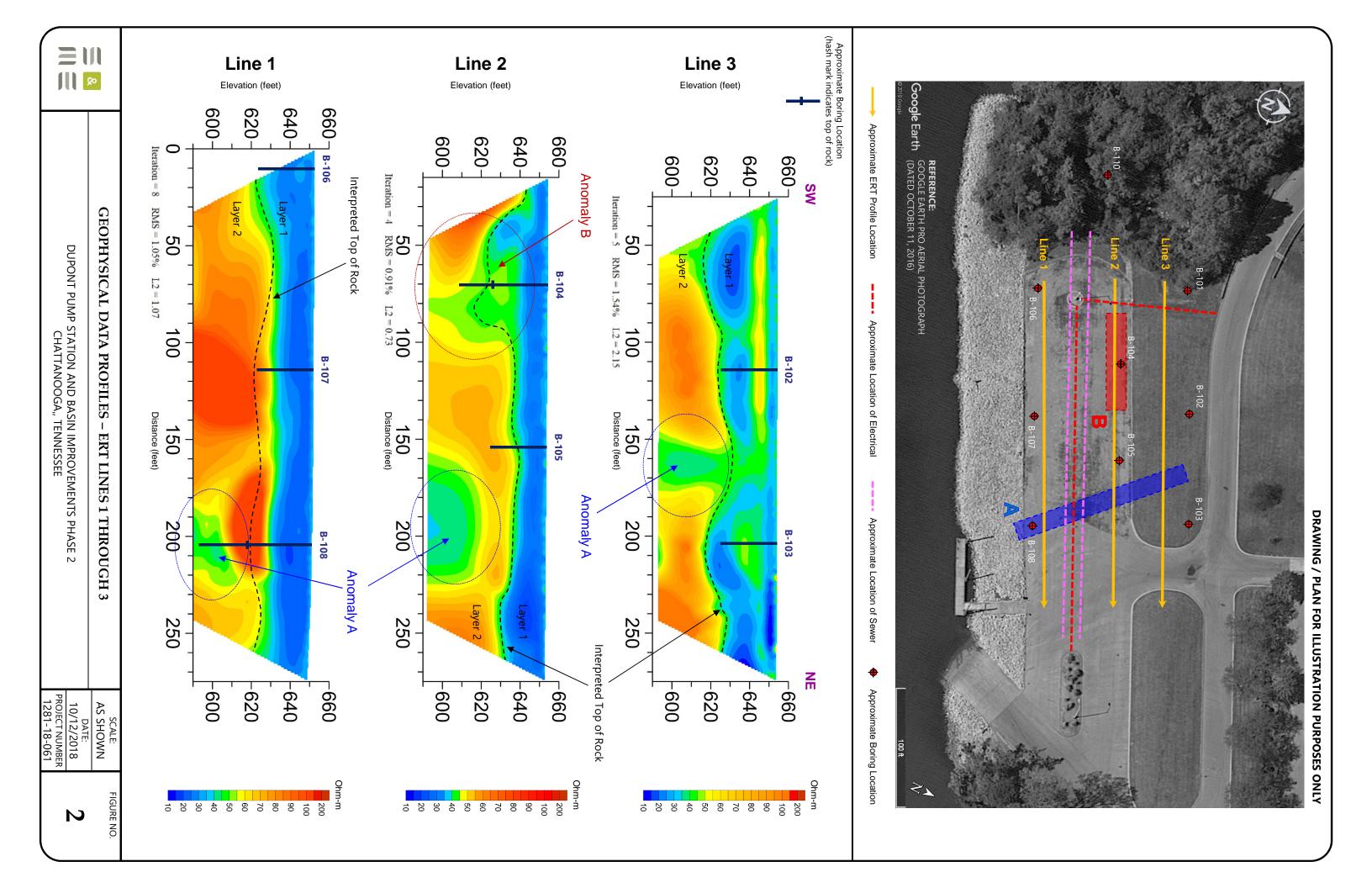
Geophysical Data Profiles – ERT Lines 1 through 3, Figure 2

October 12, 2018 3

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED OCTOBER 11, 2016)

SITE VICINITY MAP


DUPONT PUMP STATION AND BASIN IMPROVEMENTS PHASE 2 CHATTANOOGA,, TENNESSEE

SCALE:
NOT TO SCALE

DATE:
10/12/2018

PROJECT NUMBER 1281-18-061 FIGURE NO.

1

January 30, 2019

CDM Smith 4600 Park Rd #240 Charlotte, North Carolina 28209

Attention: Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference: Revised Report for Geophysical Services

DuPont Pump Station and Basin Improvements Phase 2

Chattanooga, Tennessee

S&ME Project No. 1281-18-061R2

Dear Mr. Tastan:

S&ME, Inc. (S&ME) has performed geophysical services at the above referenced site located in Chattanooga, Tennessee. These services were performed in general accordance with S&ME Proposal No. 121800346CO1 dated January 9, 2019. This report has been revised based on comments in an email from CDM Smith on January 30, 2019.

Project Information

CDM Smith is performing consulting services for a proposed new pump station facility located near Dixie Drive in Chattanooga, Tennessee (**Figure 1**). During the test boring program conducted by CDM Smith for the original location of the proposed facility, an approximate 11-foot vertical void was encountered in one of the borings (B-108). Depth to the top of rock at B-108 is about 33 feet below ground surface (bgs) with the encountered top of the void at about 45 feet bgs. The water table is just above the soil/rock interface so the encountered void is likely water-filled. S&ME previously performed geophysical services within the original proposed area and identified potential karst features such as voids and bedrock joints/fractures. CDM Smith requested S&ME provide additional geophysical services at three alternative sites for the proposed facility (Sites A, B, and D).

Methodology and Field Services

Between October 3, 2018 and January 17, 2018, S&ME completed Electrical Resistivity Tomography (ERT) surveys within the accessible portions of the original site and Sites A, B, and D (**Figure 2**). ERT is an active geophysical technique that involves the introduction of a known amount of current into the ground and measuring the response in order to identify varying electrical potentials in subsurface material. By introducing a known amount of current into the ground, the measured voltage potential at the surface is used to calculate the resistivity of a particular volume of subsurface media.

In general, clayey and moist soils result in lower resistivity (higher conductivity) readings, while dry sands, gravels, chert, and competent limestone/dolomite exhibit higher resistivity values. The resistivity of materials also partially depends on the substance filling its pore or void space. If a cavity or fracture is air-filled, a highly resistive anomaly within the limestone/dolomite unit is expected. If it is water- or clay-filled, an anomaly more conductive

Chattanooga, Tennessee S&ME Project No. 1281-18-061R2

than the surrounding limestone/dolomite unit is expected. Natural variations in porosity and grain size distribution can also cause such anomalies. It is important to note that actual ground resistivity is not collected during a resistivity survey. The survey is used to collect the apparent resistivity of a volume of material that is dependent upon electrode spacing. Actual resistivities are later determined through a data inversion process.

The ERT method requires that a series of small current and potential stainless-steel electrodes be inserted into the ground and data collected using various array configurations (Dipole-Dipole, Wenner, etc.). The electrodes are connected to a transmitter/recording instrument (resistivity meter) that generates the induced current and stores the resulting measurements for later processing and analysis. The configuration of the collected data (array) is dependent on the objectives of the investigation (e.g., vertical soil and bedrock profiling, cavity detection, fracture mapping, etc.). ERT measurements are acquired from the voltage potential difference measured between two electrodes and are dependent upon the distance between the electrodes. Material included between the electrodes is essentially averaged. Therefore, limitations of this method exist dependent upon the resolution of data acquisition needed versus the depth of a target.

An AGI SuperStingTM R8/IP resistivity system configured with 56 electrodes was used in general accordance with ASTM D6431-99 (2010) "Using DC Resistivity for Subsurface Investigations". A total of twelve (12) ERT profiles ranging between about 275 and 330 feet in length were collected using the Dipole-Dipole array configuration; Lines 1, 2, and 3 at the original site, Lines 4, 5, and 6 at Site B, Lines 7, 8, and 9 at Site D, and Lines 10, 11, and 12 at Site A (**Figure 2**). Line locations were generally based on site access and, if possible, to avoid potential influence from existing buried utilities. However, the beginnings of Lines 2 and 3, and the end of Line 12, were slightly shortened due to shallow interference identified during data processing which are likely related to buried electrical lines and/or structures within those areas. Electrodes for each profile were spaced at 5 feet. Where asphalt pavements were encountered, 1/2 inch diameter holes were required in order for the electrodes to be inserted directly into the underlying soils. Each drilled hole was backfilled with a flowable asphalt sealant at the end of the survey.

ERT data was processed using AGI's EarthImager 2D software and Golden Software's Surfer® was used to grid and plot the data. Elevations used for our models were based on provided plans from CDM Smith and/or from the Hamilton County GIS website rather than actual field survey measurements performed by S&ME and should be considered approximate. ERT data profiles are presented in **Figures 3 through 6**.

Results

The ERT results depicted in **Figure 3 through 6** indicate a varying resistivity contrast across the surveyed areas that generally range from approximately 10 ohm-meters (ohm-m) to 200 ohm-m. Presented depths of the ERT profiles are at about 40 to 60 feet below ground surface (bgs).

In general, the ERT profiles exhibit two layers (Layer 1 and 2). The upper Layer 1 is primarily characterized
by relatively conductive material less than about 50 ohm-m and the underlying Layer 2 generally consists
of material greater than about 50 ohm-m. Based on the provided borings, Layer 1 is interpreted to be
related to the soil overburden and Layer 2 is interpreted to be related to the limestone bedrock.

January 30, 2019 2

Chattanooga, Tennessee S&ME Project No. 1281-18-061R2

- Eight anomalous subsurface features were also identified in the ERT data sets (Anomalies A through H);
 Anomalies A and B at the original site, Anomaly C at Site B, Anomalies D and E at Site D, and Anomalies F,
 G, and H at Site A.
- Anomalies A, F, and G are characterized by conductive areas within the interpreted bedrock (Layer 2) and are consistent with possible water/clay-filled voids (A and F) and/or joints/fractures within the bedrock (G).
- Anomalies B, C, D, E, and H appear to be generally characterized by a topographic low along the surface
 of the interpreted bedrock. However, the interpreted bedrock within several of these features also exhibit
 relatively lower resistivity values that may be related to water/clay-filled voids, joints, and/or fractures (B
 and C).
- In addition, the buried structures located at the end of Line 11 and south of Line 6 may have influenced
 the ERT data sets. As such, Anomaly H may instead be associated with a buried structure and the higher
 conductivity values exhibited in Line 6 may have masked the actual subsurface conditions so potential
 features along Line 6 were not interpreted.
- Interpreted anomalies are also summarized in the table below.

Anomaly	Site	ERT Line	Description
Α	Original	1, 2 and 3	Possible water/clay-filled voids within the bedrock
В	Original	2	Topographic low along bedrock surface with possible joints/fractures
С	В	4 and 5	Topographic low along bedrock surface with possible joints/fractures
D	D	7	Topographic low along bedrock surface
Е	D	7	Topographic low along bedrock surface
F	А	12	Possible water/clay-filled voids within the bedrock
G	А	12	Possible joints/fractures within the bedrock
Н	А	11	Topographic low along bedrock surface (possibly influenced by buried structure)

Limitations

The geophysical method used for this survey has inherent limitations. Buried site metallic features (e.g., utilities, etc.) and overhead transmission lines can produce excessive noise and/or false responses in ERT data. As such, ERT profile locations are generally positioned where possible influence is limited. Depth of exploration for an ERT survey is limited by the allowable length of the collected data profile. Limiting factors due to site constraints such as property boundaries, surficial obstructions, utilities, etc. can reduce profile lengths. Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of subsurface features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of subsurface features was based on our review of provided information and of the geophysical survey. Under no circumstances will S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

January 30, 2019 3

Chattanooga, Tennessee S&ME Project No. 1281-18-061R2

Closure

S&ME appreciates the opportunity to assist you during this phase of the project. If you should have any questions concerning this report or if we may be of further assistance, please contact us.

Sincerely,

S&ME, Inc.

Jason B. Cox, PG (GA)

Project Geophysicist

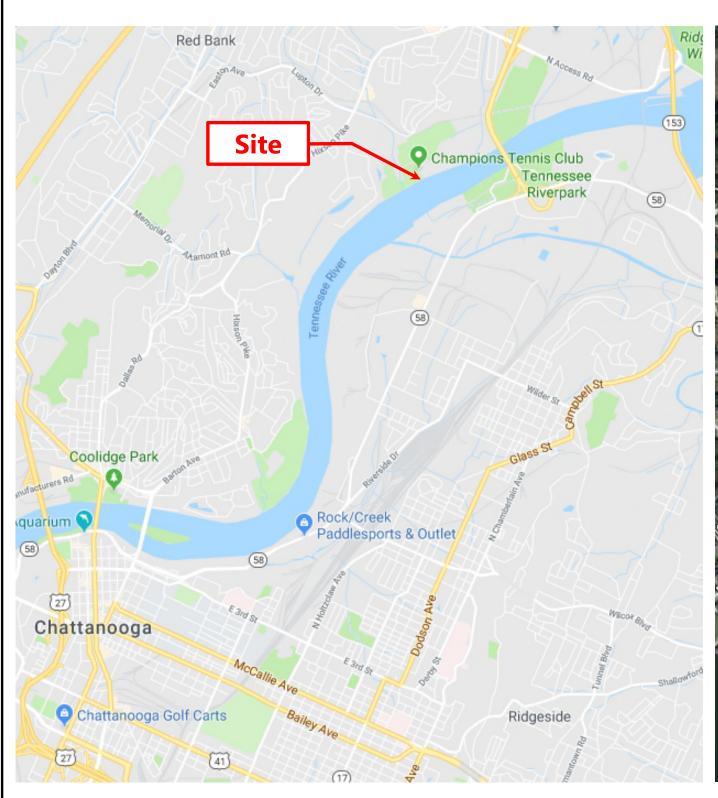
Kevin D. Hon, PG


Geophysical Group Leader

Attachments: Site Vicinity Plan, Figure 1

Geophysical Location Plan, Figure 2

Geophysical Data Profiles – ERT Lines 1 through 3 (Original Site), Figure 3 Geophysical Data Profiles, ERT Lines 4 through 6 (Alternative Site B), Figure 4 Geophysical Data Profiles, ERT Lines 7 through 9 (Alternative Site D), Figure 5 Geophysical Data Profiles, ERT Lines 10 through 12 (Alternative Site A), Figure 6


January 30, 2019 4

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED OCTOBER 11, 2016)

SITE VICINITY PLAN

DUPONT PUMP STATION AND BASIN IMPROVEMENTS PHASE 2 CHATTANOOGA, HAMILTON COUNTY, TENNESSEE

SCALE:
NOT TO SCALE

DATE:
1/30/2019

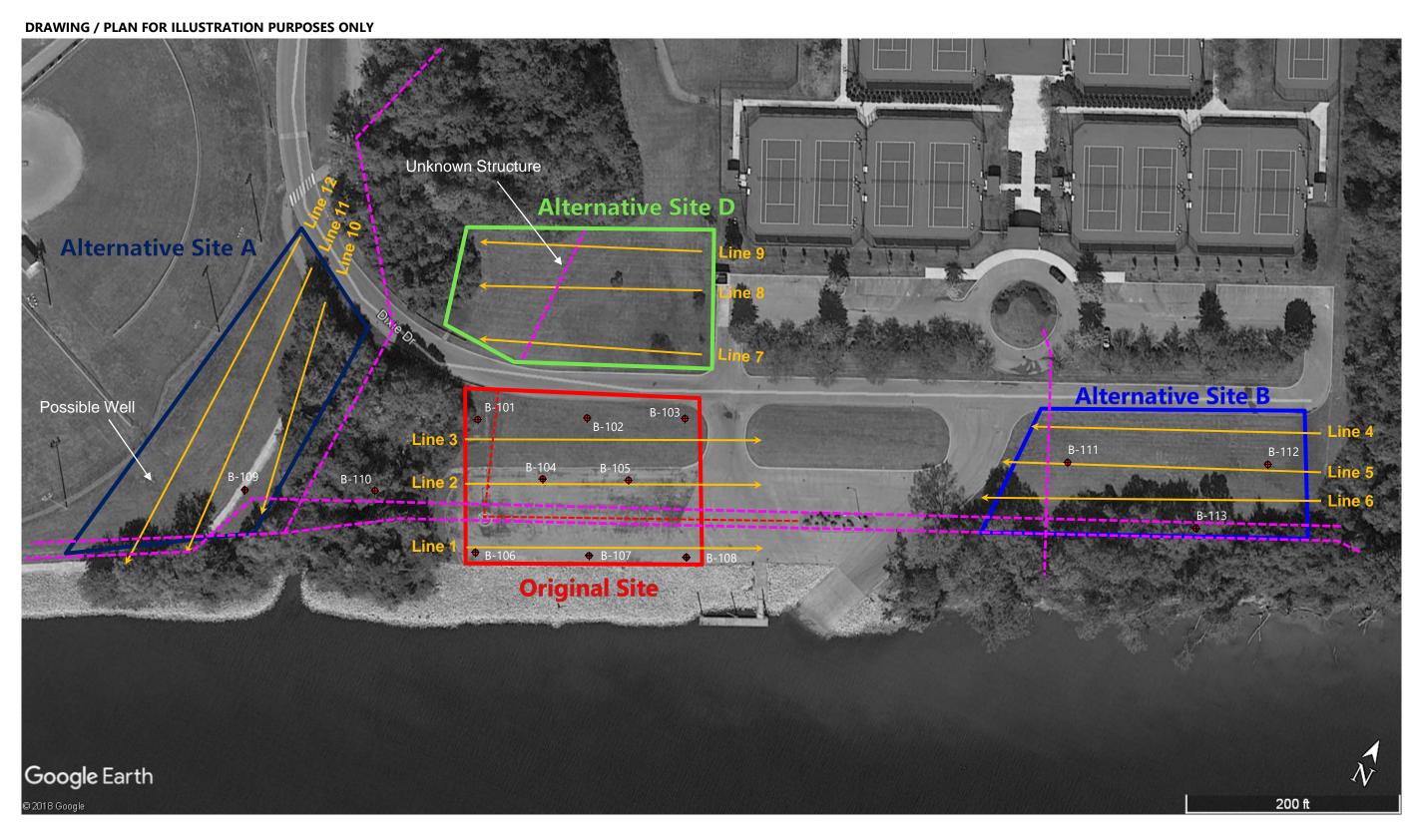

PROJECT NUMBER 1281-18-061R2

FIGURE NO.

REFERENCE:

GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED OCTOBER 11, 2016)

LEGEND

Approximate ERT Profile Location

---- Approximate Location of Electrical

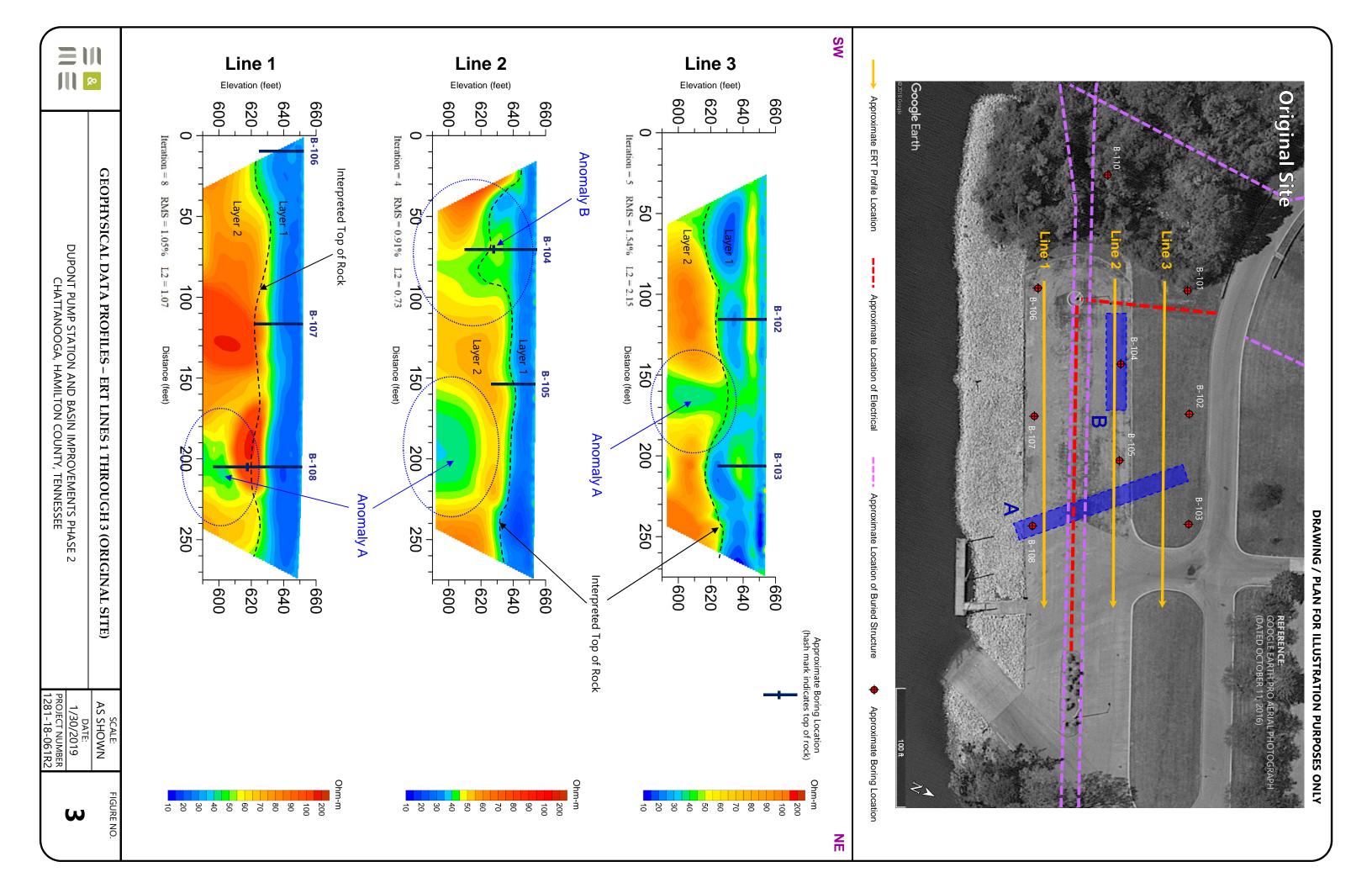
---- Approximate Location of Buried Structure

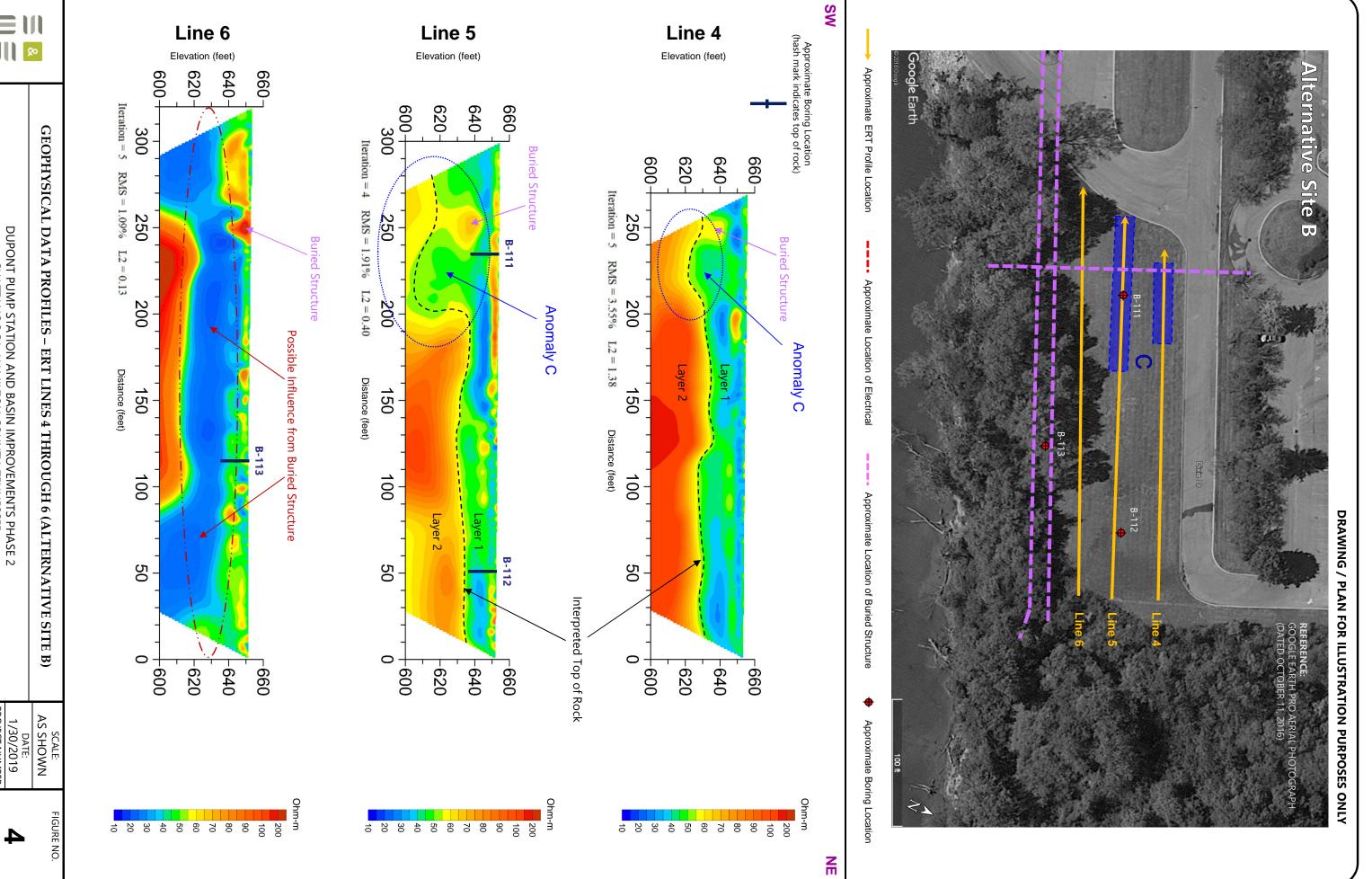
Approximate Boring Location

SCALE:

DUPONT PUMP STATION AND BASIN IMPROVEMENTS PHASE 2 CHATTANOOGA, HAMILTON COUNTY, TENNESSEE

GEOPHYSICAL LOCATION PLAN

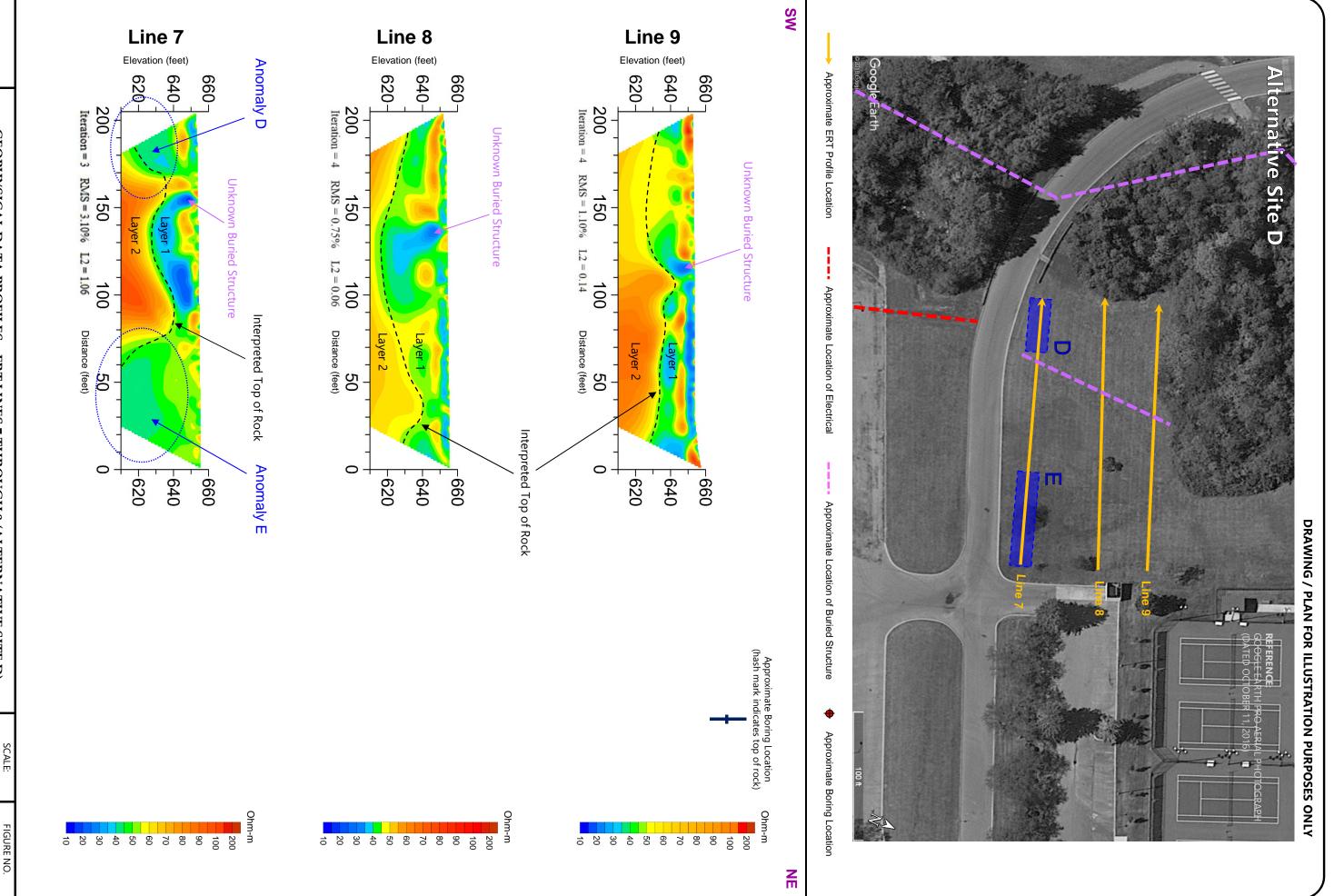

NOT TO SCALE

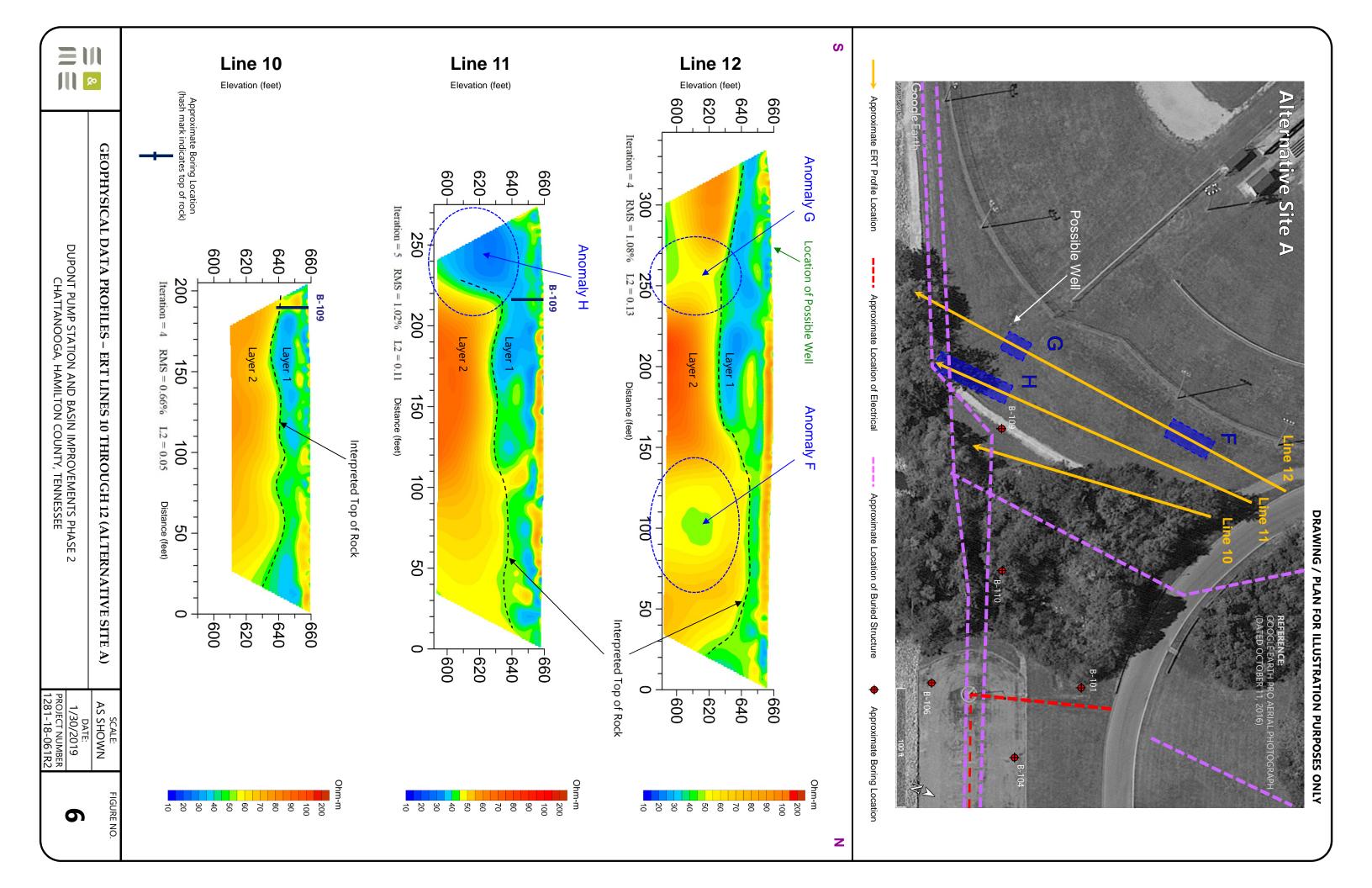

DATE: 1/30/2019

PROJECT NUMBER 1281-18-061R2

FIGURE NO.

2




DUPONT PUMP STATION AND BASIN IMPROVEMENTS PHASE 2 CHATTANOOGA, HAMILTON COUNTY, TENNESSEE

PROJECT NUMBER 1281-18-061R2

5

Appendix C

CDM Smith Test Boring Logs

BOREHOLE LOG CDM-204

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements

Project Location: Chattanooga, TN Project Number: 109746

Drilling Contractor: Terracon, Inc. Surface Elevation (ft.): 655.5

Drilling Method/Rig: HSA/Acker Total Depth (ft.): 66.3

Drillers: Richard Depth to Initial Water Level (ft-bgs): 24.0

Abandonment Method: Backfilled with grout. **Drilling Date: Start:** 11/20/2018 **End:** 11/20/2018

Borehole Coordinates: See Boring Location Plan Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
			0		0	<u> </u>	TOPSOIL	6" of Topsoil.
SS	S-1	24/20		6	3 3 5		CL	Moist, medium stiff, brown and dark brown, lean CLAY , trace roots.
SS	S-2	24/24		10	4 5 5			Moist, stiff, brown, lean CLAY , trace roots.
SS	S-3	24/24	6 <u>50.5</u> 5	11	8 2 4 7			Moist, stiff, brown, lean CLAY , trace roots.
					9			Moist, stiff, brown with gray, lean CLAY .
SS	S-4	24/22		10	4 6 6			,,,
SS	S-5	24/18		10	2 4 6			Moist, stiff, brown, lean CLAY .
			645.5		7			
SS	S-6	24/18	10	8	WOH 4 4 7			Moist, stiff, brown, lean CLAY .
SS	S-7	24/18	640.5	9	1 4 5 7			Moist, stiff, brown, lean CLAY .
			15	1		V//////		

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Hand Auger
AR - Air Rotary
DTR - Dual Tube Rotary Air Rotary
Dual Tube Rotary
Foam Rotary FR MR RC CT JET Mud Rotary
Reverse Circulation
Cable Tool
Jetting Driving Drill Through Casing

30REHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5" Rock Core
NX - 2.1" Rock Core
GP - Geoprobe
HP - Hydro Punch NX GP HP SS ST Split Spoon Shelby Tube - Shelby Tube - Wash Sample WS

OTHER: Above Ground Surface PWR - Partially Weathered Rock

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer

REC = Recovery

RQD = Rock Quality Designation

24-hour water level reading for depth to initial water level

Date: 3-11-19 Reviewed by: EOT

BOREHOLE LOG CDM-204

		ity of Cha			TN		·	Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
					3 5		CL	Moist, stiff, brown, black and gray, lean CLAY , trace fine sand.
SS	S-8	24/18	635.5 _ 20	11	6 9			
SS	S-9	24/18	630.5	2	WOH WOH 2 4		СН	Moist to wet, very soft, gray, fat CLAY . (Black, decayed wood from 23' to 24')
SS	S-10	24/18	625.5 30	2	WOH WOH 2 3			Wet, very soft, dark gray, fat CLAY , trace sand.
SS	S-11	24/18	620.5	31	3 10 21 16		SW	Wet, dense, gray, fine to medium SAND . (Gravel in tip)
SS			35		1		CL	Wet, very soft, tan, CLAY , some gravel.
SS	S-12	24/18	615.5 40	2	1 1 1			

BOREHOLE LOG CDM-204

Client: City of Chattanooga, TN **Project Name:** Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in or Drilling Rate (min/ft) USCS Designation Sample Adv/Rec (inches) N-Value Graphic Log Sample Type Sample Number Elev. Depth Material Description CL Wet, severe weathering, extremely fractured, light gray, LIMESTONE. 610.5 45 VOID Water filled VOID from 45.1 feet to 47.1 feet bgs. Wet, severe weathering, extremely fractured, light gray, **LIMESTONE**. NQ2 C-1 96/16 VOID Water filled VOID from 47.5 feet to 63.2 feet bgs. <u>605.5</u> 600.5 55 GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19 NQ2 C-2 120/0 <u>595.5</u> Wet, hard, moderately weathered, slightly fractured, gray VOID LIMESTONE. BOREHOLE NQ2 C-3 57.6/26.5 REC=46%; RQD=21% 590.5 Water filled VOID from 63.4 feet to 64.4 feet bgs.

BOREHOLE GINT_DUPONT BORING LOGS.GPJ CDM_CORP.GDT 3/19/19

BOREHOLE LOG CDM-204

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746 Project Location: Chattanooga, TN Blows per 6-in or Drilling Rate (min/ft) USCS Designation Sample Adv/Rec (inches) Sample Type Sample Number Graphic Log N-Value Elev. Depth (ft.) Material Description Wet, hard, moderately weathered, slightly fractured, gray **LIMESTONE**. Boring terminated at 66.3 feet bgs. 585.5 70 580.5 75 <u>575.5</u> <u>570.5</u>

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements

Project Location: Chattanooga, TN Project Number: 109746

Drilling Contractor: S&ME/Tri-State **Surface Elevation (ft.):** 651.9

Drilling Method/Rig: HSA/CME-550X Total Depth (ft.): 65.2

Drillers: Freeman **Depth to Initial Water Level (ft-bgs):** 0.0

Drilling Date: Start: 2/28/2019 **End:** 3/1/2019 **Abandonment Method:** Backfilled with grout.

Borehole Coordinates: See Boring Location Plan Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
			0				CL	
SS S	S-1	18/18	646.9	14	5 6 8			Moist, stiff, brown, CLAY
SS S	S-2	18/16		10	4 4 6			Moist, stiff, brown, CLAY, trace mica
ss s	S-3	18/18	6 <u>36.9</u>	9	3 4 5			Moist, stiff, brown, CLAY , trace mica - Pockets of wet, light gray/tan, CLAY.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Hand Auger
AR - Air Rotary
DTR - Dual Tube Rotary
FR - Foam Rotary
MR - Mud Rotary
RC - Reverse Circulation
CT - Cable Tool
JET - Jetting

Driving Drill Through Casing

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5" Rock Core
NX - 2.1" Rock Core
GP - Geoprobe
HP - Hydro Punch
SS - Split Spoon
ST - Shelby Tube
WS - Wash Sample

OTHER:
AGS - Above Ground Surface
PWR - Partially Weathered Rock

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long

WOH = Weight of hammer

REC = Recovery

RQD = Rock Quality Designation

24-hour water level reading for depth to initial water level

Reviewed by: EOT Date: 3-11-19

		ity of Cha	_		TN			Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-4	18/18		6	2 3		CL	Moist to wet, medium stiff, CLAY , trace mica - Pockets of wet, tan, CLAY.
ss	S-5	24/24	_631.9 	9	3 3 4 5			Wet, stiff, brown, orange and gray, CLAY , trace mica
SS	S-6	24/24		0	WOH WOR WOH		SC	Wet, very soft, dark gray, CLAY, some fine to coarse sand
ST	ST-1	24/22	626.9 25		2 P U S			Wet, dark gray, CLAY , some fine to coarse sand
SS	S-7	24/24		3	1 2 1 2 3			Wet, very loose, dark gray, fine to coarse SAND , some clay - 2" wood fragments in spoon tip.
SS	S-8	10/6		>50	9 50/4"			Wet, very dense, dark gray, fine to coarse SAND - Rock fragments in tip. Auger refusal encountered at 28.8 ft bgs. Begin rock coring.
NQ	C-1	17/13	621.9 30					Hard, fresh, blue-gray, fine grained, LIMESTONE; primary joint set horizontal, close, rough, stepped, fresh, tight; secondary joint set vertical, rough, planar, discolored, tight. REC = 76% Hard to very hard, fresh, blue-gray, fine grained LIMESTONE;
	C-2	60/48						primary joint set shallow, moderately close, rough, stepped, fresh, partly open. REC = 80%, RQD = 72%
			616.9 35				VOID	Water-filled VOID from 33.7 to 34.2 ft bgs.
NQ NQ	C-3	60/56						Hard to very hard, fresh, blue-gray and white, fine grained LIMESTONE; primary joint set horizontal, moderately close, rough, stepped, fresh to discolored, partly open; secondary joint set steep, wide, rough, stepped, discolored, open. REC = 93%, RQD = 93%

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in o Drilling Rate (min/ft) USCS Designation Graphic Log Sample Adv/Rec (inches) Sample Type Sample Number N-Value Elev. Material Depth Description (ft.) Hard to very hard, fresh, blue-gray and white, fine grainedLIMESTONE; primary joint set shallow, moderately close, rough, planar, fresh, tight. REC = 82%, RQD = 63% - Becomes highly fractured near void NQ C-4 60/49 VOID Water-filled VOID from 43.7 to 44.5 ft bgs. <u>606.9</u> 2" Flint 45.1 to 45.3 ft bgs. Hard, fresh, blue-gray, fine grainedLIMESTONE; primary joint set horizontal, wide, rough, stepped, fresh, partly open; secondary joint set steep, very wide, rough, planar, discolored, tight. **REC = 99%, RQD = 99%** NQ 60/59 C-5 601.9 Hard to very hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, wide, rough, stepped, fresh, open; secondary joint set steep, very wide, rough, planar, discolored, partly REC = 94%, RQD = 94% 60/56.5 NQ C-6 <u>596.9</u> Hard, fresh, blue-gray, black and white, fine grained LIMESTONE; primary joint set shallow, close, rough, planar, fresh, open to partly CORP.GDT 3/19/19 **REC = 100%, RQD = 92%** - Flint seams 55.1 to 56 ft bgs and 57.2 to 58 ft bgs. NQ C-7 60/63 BOREHOLE GINT DUPONT BORING LOGS, GPJ CDM 591.9 Hard to very hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set shallow, moderately close, rough stepped, partly open. **REC = 95%, RQD = 95%** NQ C-8 60/57 586.9

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in or Drilling Rate (min/ft) USCS Designation Sample Adv/Rec (inches) N-Value Sample Type Sample Number Graphic Log Elev. Depth (ft.) Material Description Boring terminated at 65.2 ft bgs. 581.9 70 576.9 75 <u>571.9</u> BOREHOLE GINT_DUPONT BORING LOGS.GPJ CDM_CORP.GDT 3/19/19 566.9 85

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements

Project Location: Chattanooga, TN Project Number: 109746

Drilling Contractor: S&ME/Tri-State Surface Elevation (ft.): 653.7

Drilling Method/Rig: HSA/CME-550X Total Depth (ft.): 54.9

Depth to Initial Water Level (ft-bgs): 0.2 **Drillers:** Freeman

Drilling Date: Start: 2/26/2019 **End:** 2/27/2019 Abandonment Method: Backfilled with grout.

Borehole Coordinates: See Boring Location Plan Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-1	18/18	0	15	5 6 9		CL	Moist, stiff, brown and gray, CLAY , trace roots
SS	S-2	18/18	6 <u>43.</u> 7 10	14	6 6 8			Moist, stiff, brown, tan and gray, CLAY
SS	S-3	18/18		12	5 5 7			Moist, stiff, brown, CLAY , trace mica - Wet, gray, vertical seams.

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS:
HSA - Hollow Stem Auger
SSA - Solid Stem Auger
HA - Hand Auger
AR - Air Rotary
DTR - Dual Tube Rotary Air Rotary
Dual Tube Rotary
Foam Rotary FR MR RC CT JET

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

Auger/Grab Sample
California Sampler
1.5" Rock Core
2.1" Rock Core
Geoprobe
Hydro Punch NX GP HP SS ST Mud Rotary
Reverse Circulation
Cable Tool
Jetting Split Spoon Shelby Tube - Shelby Tube - Wash Sample WS OTHER: Driving Drill Through Casing

Above Ground Surface PWR - Partially Weathered Rock

SAMPLING TYPES:

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long

WOH = Weight of hammer

REC = Recovery

RQD = Rock Quality Designation

24-hour water level reading for depth to initial water level

Date: 3-11-19 Reviewed by: EOT

Client: City of Chattanooga, TN Project Location: Chattanooga, TN				TN			Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746	
Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
					2		CL	Moist, medium stiff, brown and tan, CLAY , trace mica
SS	S-4	18/18	633.7	7	3 4 P			- Gray seams.
ST	ST-1	24/24	20		U S H			
SS	S-5	24/24		9	4 3 6			Wet, stiff, brown and gray-black, CLAY , little fine to coarse sand, trace mica
SS	S-6	24/24	628.7	2	WOH WOR 2		SC	Wet, very soft, brown and gray-black, CLAY , little fine to coarse sand, trace mica Wet, very loose, dark gray, fine to coarse SAND, some clay, trace
SS	S-7	24/24	_6 <u>28.</u> 7 _ 	2	3 1 1 1			mica Wet, very loose, dark gray, fine to coarse SAND, some clay, little wood, trace mica
SS	S-8	3/0	 	>50	2 50/3"			No Recovery. Begin rock coring at 28.6 ft bgs.
NQ	C-1	16/15	623.7					Moderately hard, slightly weathered, gray and white, dolomitic LIMESTONE; primary joint set shallow, close, rough, stepped, discolored, open. REC = 94%, RQD = 94%
NQ	C-2	60/60	30					Moderately hard to hard, slightly weathered, blue-gray, dolomitic LIMESTONE ; primary joint set horizontal, close to moderately close, rough, stepped, discolored, open; secondary joint set steep, wide, rough, planar, discolored, partly open. REC = 100%, RQD = 77%
			618.7					
NQ	C-3	60/59.5						Moderately hard to hard, fresh, blue and gray, fine grained LIMESTONE; primary joint set horizontal to shallow, close to moderately close, rough, planar, fresh, tight to partly open. REC = 99%, RQD = 84% - Clayey sand infilling.
								Hard, fresh, blue-gray, fine grained LIMESTONE ; primary joint set

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in o Drilling Rate (min/ft) USCS Designation N-Value Sample Adv/Rec (inches) Graphic Log Sample Type Sample Number Elev. Material Depth Description (ft.) horizontal, close, rough, stepped, fresh, tight to open. **REC = 99%, RQD = 93%** 60/59 NQ C-4 Very hard flint seam 43.1 to 43.3 ft bgs. 608.7 Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, close, rough, stepped, fresh to discolored, partly open to **REC = 99%, RQD = 74%** -Very hard, fresh, dark gray and white, aphanitic FLINT; primary joint set shallow, close, rough, stepped, fresh, open encountered from 45.0 to 46.3 ft bgs and from 47.5 to 48 ft bgs. NQ C-5 60/59 603.7 Moderately hard, fresh, blue-gray, fine grained **LIMESTONE**; primary joint set horizontal to shallow, moderately close, rough, stepped, fresh, tight to partly open. REC = 98%, RQD = 98% 60/58.5 NQ C-6 598.7 Boring terminated at 54.9 ft bgs. BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19 593.7 588.7

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements

Project Location: Chattanooga, TN Project Number: 109746

Drilling Contractor: S&ME/Tri-State Surface Elevation (ft.): 652.8

Drilling Method/Rig: HSA/CME-550X Total Depth (ft.): 60.3

Drillers: Freeman Depth to Initial Water Level (ft-bgs): NR

Drilling Date: Start: 3/1/2019 **End:** 3/2/2019 Abandonment Method: Backfilled with grout.

Borehole Coordinates: See Boring Location Plan Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-1	24/22	0 _	5	4 3 2 2		CL	Moist, medium stiff, brown, CLAY and fine to coarse GRAVEL , trace roots
SS	S-2	24/23		7	3 2 5 5			Moist, medium stiff, brown-gray, CLAY , trace fine to coarse gravel, trace roots
SS	S-3	24/24	6 <u>47.</u> 8 5	12	5 5 7 8			Moist, stiff, brown, CLAY
SS	S-4	24/24		11	4 5 6 8			Moist, stiff, brown, CLAY - Pockets of wet, gray clay
SS	ST-1	24/3	642.8		P U S H			Moist, brown CLAY - 3" recovery, sample abandoned
ST	ST-2	24/12	10		P U S H			12" Recovery (estimated 10 to 11 ft bgs), water drained from bottom of tube when extracted.
SS	S-5	24/12		5	3 3 2 4		CH	Moist to wet, medium stiff, orange-brown, CLAY
SS	S-6	24/24	_6 <u>37.</u> 8_ 15	9	4 4 5			Moist to wet, stiff, orange-brown, CLAY , trace mica

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger HSA SSA HA AR DTR Air Rotary
Dual Tube Rotary
Foam Rotary FR MR RC CT JET

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

Mud Rotary
Reverse Circulation
Cable Tool
Jetting Driving Drill Through Casing

- Shelby Tube - Wash Sample WS OTHER: Above Ground Surface PWR - Partially Weathered Rock

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5" Rock Core
NX - 2.1" Rock Core
GP - Geoprobe
HP - Hydro Punch NX GP HP SS ST Split Spoon Shelby Tube

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long

WOH = Weight of hammer

REC = Recovery

RQD = Rock Quality Designation

24-hour water level reading for depth to initial water level

Reviewed by: EOT **Date:** 3-11-19

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in c Drilling Rate (min/ft) USCS Designation Graphic Log Sample Adv/Rec (inches) Sample Type Sample Number N-Value Elev. Material Depth Description (ft.) СН Moist to wet, stiff, orange-brown, CLAY - Pockets of wet, gray/tan clay SS S-7 24/24 10 Moist to wet, stiff, brown, tan and black, CLAY - Pockets of wet, gray/tan clay 3 SS S-8 24/24 9 6 632.8 20 Wet, soft, dark gray, CLAY, some fine to coarse sand, little mica SS S-9 18/18 4 627.8 SS S-10 5.5/2 >50 50/5.5 Wet, hard, dark gray, CLAY, some fine to coarse sand, little mica - Wood chips in tip. Auger refusal at 29.3 ft bgs. SP Sand encountered to 35.9 ft bgs. Casing flushed until competent rock 622.8 was reached. Solid material observed 33.1 to 33.5 ft bgs. 30 BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19 617.8 Medium hard to hard, slightly weathered, blue-gray, fine grained LIMESTONE; primary joint set steep, close, rough, stepped, discolored, open. REC = 63%, RQD = 52% VOID 4" VOID encountered 37.6 to 37.9 ft bgs. NQ C-1 52/33 612.8

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

BOREHOLE LOG B-503

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746 Project Location: Chattanooga, TN Blows per 6-in o Drilling Rate (min/ft) USCS Designation Graphic Log Sample Adv/Rec (inches) Sample Type Sample Number N-Value Elev. Material Depth Description (ft.) Medium hard to hard, slightly weathered, blue-gray, fine grained **LIMESTONE**; primary joint set shallow, close, rough, stepped, fresh, REC = 93%, RQD = 72% - Very hard, highly fractured to slightly fractured, dark gray, FLINT encountered from 42.5 to 43.4 ft bgs and from 44.7 to 45.2 ft bgs. NQ C-2 60/56 <u>607.8</u> Hard, fresh, blue-gray, fine grained **LIMESTONE**; primary joint set horizontal, close, rough, stepped, fresh, open. **REC = 94%, RQD = 75%** - Several core pieces were approximately 3.5" in length. NQ C-3 60/59.5 602.8 Hard, fresh, blue-gray, fine grained **LIMESTONE**; primary joint set horizontal, moderately close, rough, stepped, fresh to slightly discolored, partly open. **REC = 100%, RQD = 98%** NQ C-4 60/60 5<u>97.8</u> Hard, fresh, blue-gray, fine grained **LIMESTONE**; primary joint set horizontal, moderately closerough, planar, partly open. **REC = 94%, RQD = 87%** - Quartz inclusions 55.2 to 55.5 ft bgs. NQ C-5 60/60 <u>592.8</u> Boring terminated at 60.3 ft bgs. 587.8

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements

Project Location: Chattanooga, TN Project Number: 109746

Drilling Contractor: S&ME/Tri-State Surface Elevation (ft.): 654.6

Drilling Method/Rig: HSA/CME-550X Total Depth (ft.): 55

Drillers: Freeman Depth to Initial Water Level (ft-bgs): 3.0

Drilling Date: Start: 2/25/2019 **End:** 2/26/2019 Abandonment Method: Backfilled with grout.

Borehole Coordinates: See Boring Location Plan Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-1	24/20	0	4	2 2 2 2 3		CL	Moist, soft, dark brown, CLAY & SILT, trace roots
SS	S-2	24/16		6	2 2 4 3			Moist, medium stiff, dark brown, CLAY & SILT , trace roots Moist, medium stiff, orange and white, CLAY , some fine to coarse
SS	S-3	24/24	_649.6 5	13	1 5 8 10		CH	gravel Moist, stiff, dark brown and dark gray, CLAY
SS	S-4	24/20		15	4 7 8 9			Moist, stiff, dark brown and dark gray, CLAY
SS	S-5	24/22	644.6	13	3 7 6 7			Moist, stiff, brown, CLAY
SS	S-6	24/24	10	13	4 6 7 8		CL	Moist, stiff, orange-brown, CLAY
SS	S-7	24/24		12	3 5 7 8			Moist, stiff, brown, CLAY - Wet, gray vertical seams
SS	S-8	24/24	_6 <u>39.</u> 6_ 15	13	3 6 7			Moist, stiff, brown and black, CLAY, trace mica

EXPLANATION OF ABBREVIATIONS

DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger HSA SSA HA AR DTR Air Rotary
Dual Tube Rotary
Foam Rotary FR MR RC CT JET

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

Mud Rotary
Reverse Circulation
Cable Tool
Jetting

Driving Drill Through Casing

SAMPLING TYPES:
AS - Auger/Grab Sample
CS - California Sampler
BX - 1.5" Rock Core
NX - 2.1" Rock Core
GP - Geoprobe
HP - Hydro Punch NX GP HP SS ST

Split Spoon Shelby Tube - Shelby Tube - Wash Sample WS OTHER:

Above Ground Surface PWR - Partially Weathered Rock

REMARKS

Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long

WOH = Weight of hammer

REC = Recovery

RQD = Rock Quality Designation

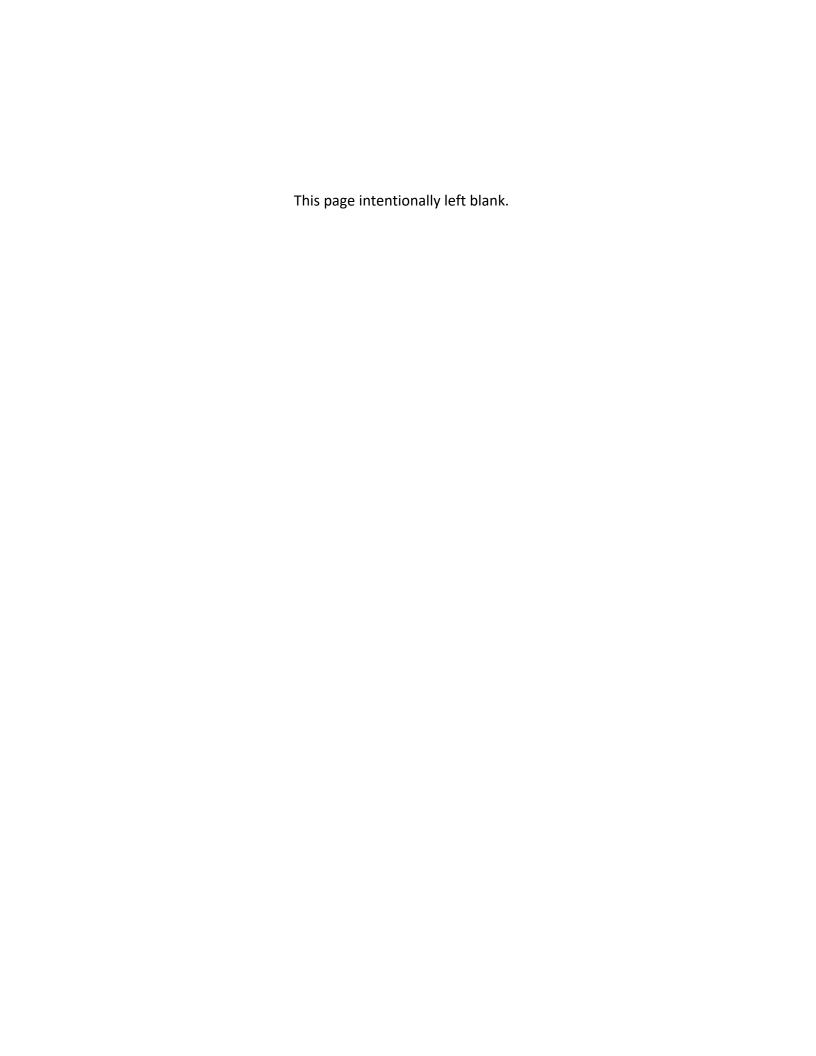
24-hour water level reading for depth to initial water level

Date: 3-11-19 Reviewed by: EOT

BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

BOREHOLE LOG B-504

Client: City of Chattanooga, TN **Project Name:** Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in c Drilling Rate (min/ft) USCS Designation Sample Adv/Rec (inches) Graphic Log Sample Type Sample Number N-Value Elev. Material Depth Description (ft.) CL Moist, stiff, brown, CLAY 4 SS S-9 24/24 10 6 7 Moist, brown, CLAY Ρ U ST-1 24/24 ST S Н 634.6 20 Moist, medium stiff, brown, tan and gray, CLAY 2 SC 2 Wet, loose, dark gray, fine to coarse SAND, some clay SS S-10 18/18 6 - Water in S-11 spoon. 629.6 25 Wet, loose, dark gray, fine to coarse SAND, some clay GP Wet, medium dense, white and gray, fine to coarse GRAVEL SS S-11 18/18 25 13 11151 - Gravel is angular rock fragments. Auger refusal encountered at 30.4 12 >/// > 624.6 ft bgs. Begin rock coring. 30 Medium hard, moderately weathered, blue-gray, fine grained LIMESTONE; primary joint set moderately dipping to steep, very S & W . S VOID close, rough, stepped, discolored to decomposed, open. **REC = 57%, RQD = 21%** VOID encountered 30.9 to 31.1 ft bgs. Appears to be filled with NQ C-1 56/32 VOID VOID encountered 33.4 to 33.5 ft bgs. Appears to be filled with clayey sand. 619.6 35 Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, close to moderately close, rough, stepped, discolored to **REC = 98%, RQD = 80%** - Flint observed 39.5 to 39.7 ft bgs and 39.9 to 40.1 ft bgs. NQ C-2 60/59 614.6



BOREHOLE GINT DUPONT BORING LOGS.GPJ CDM CORP.GDT 3/19/19

BOREHOLE LOG B-504

Client: City of Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Location: Chattanooga, TN Project Number: 109746 Blows per 6-in or Drilling Rate (min/ft) USCS Designation N-Value Graphic Log Sample Type Sample Number Sample Adv/Rec (inches) Elev. Material Depth Description (ft.) Hard, fresh, blue gray, fine grained LIMESTONE, primary joint set horizontal to shallow, moderately close, rough, planar and stepped, fresh, slightly open. **REC = 100%, RQD = 100%** - 6" seam of very hard, dark gray and white, FLINT encountered 41.6 to 42.1 ft bgs. NQ C-3 60/60 609.6 Hard, fresh, blue gray, fine grained LIMESTONE, primary joint set horizontal to shallow, moderately close, rough, planar and undulating, fresh, slightly open to tight. REC = 98%, RQD = 98% NQ 60/58.5 C-4 604.6 Medium hard to hard, fresh, blue-gray, fine grained **LIMESTONE**; primary joint set horizontal, close to moderately close, rough, undulating, fresh, partly open to tight. **REC = 100%, RQD = 100%** NQ 58/60 C-5 <u>599.6</u> Boring terminated at 55.0 ft bgs. <u>594.6</u> 589.6

Appendix D

S&ME Geotechnical Laboratory Testing Report

April 22, 2019

CDM Smith 4600 Park Road #240 Charlotte, North Carolina 28209

Attention:

Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference:

Laboratory Testing Services Report

DuPont WTP

Chattanooga, Tennessee

S&ME Project No. 1281-18-061

Dear Mr. Tastan:

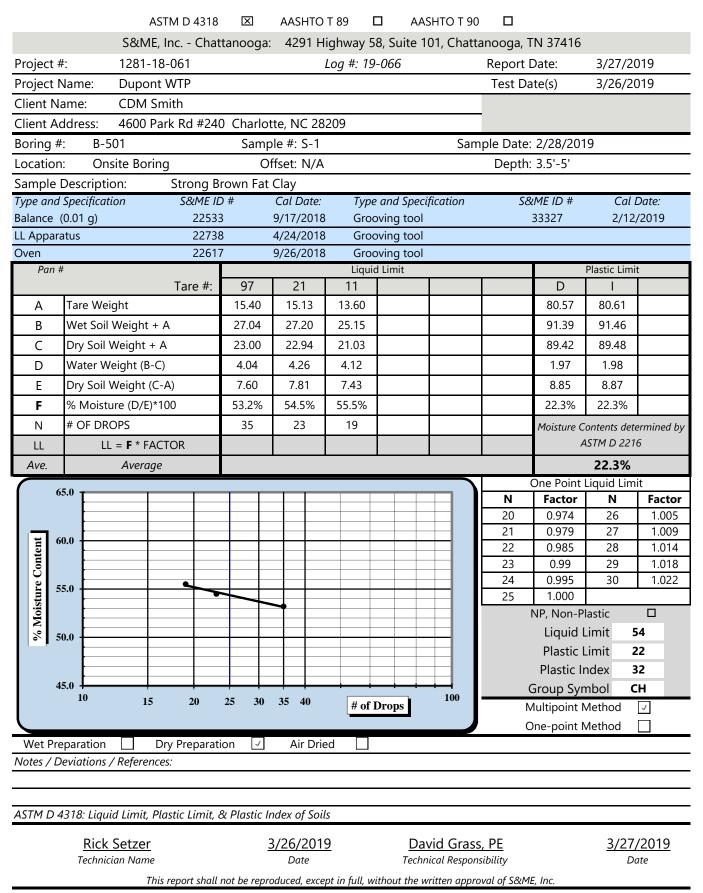
S&ME, Inc. provided drilling and laboratory testing services at the above referenced project. Services were performed in general accordance with the scope of services outlined in the Standard Form of Agreement between Engineer and Subcontractor for Drilling Services dated February 18, 2019. Attached you will find laboratory reports documenting the laboratory testing services performed.

Should you have any questions regarding this information, or if we can be of any further assistance, please contact us at your convenience.

Sincerely,

S&ME. Inc.

David Grass, PE Project Engineer


Attachments:

Laboratory Testing Reports

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Revision Date: 7/26/17

Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

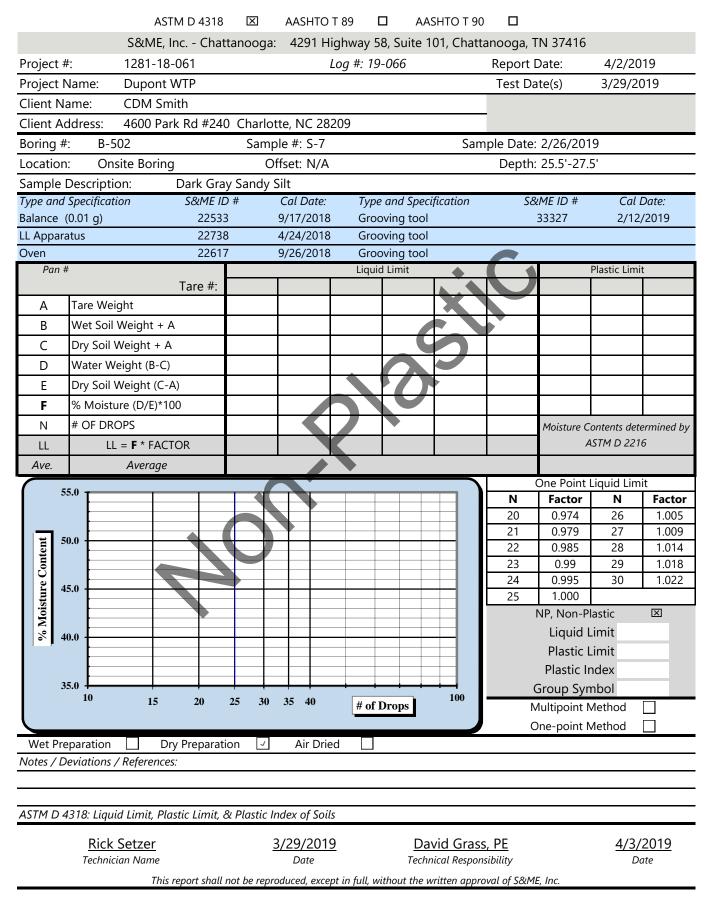
ASTM D 4318 $|\mathbf{x}|$ AASHTO T 89 AASHTO T 90 S&ME, Inc. - Chattanooga: 4291 Highway 58, Suite 101, Chattanooga, TN 37416 Project #: 1281-18-061 Log #: 19-066 Report Date: 3/29/2019 **Dupont WTP** 3/25/2019 **Project Name:** Test Date(s) Client Name: **CDM Smith** Client Address: 4600 Park Rd #240 Charlotte, NC 28209 B-501 Sample #: S-3 Sample Date: 2/28/2019 Boring #: Location: Offset: N/A Depth: 13.5'-15' **Onsite Boring** Sample Description: Yellowish Brown Clay Type and Specification S&ME ID # Cal Date: Type and Specification S&ME ID # Cal Date: Balance (0.01 g) 22533 9/17/2018 Grooving tool 33327 2/12/2019 LL Apparatus 22738 4/24/2018 Grooving tool Oven 22617 9/26/2018 Grooving tool Liquid Limit Plastic Limit Pan # 97 44 Tare #: 48 C Χ Tare Weight 13.75 15.41 13.68 81.65 81.65 Α В Wet Soil Weight + A 20.20 19.78 18.46 92.92 92.96 C Dry Soil Weight + A 18.31 18.46 16.98 91.12 91.13 1.32 Water Weight (B-C) 1.89 1.48 1.80 1.83 D 9.48 Dry Soil Weight (C-A) 4.56 3.05 3.30 9.47 Ε F % Moisture (D/E)*100 41.4% 43.3% 44.8% 19.0% 19.3% # OF DROPS 32 27 Ν 19 Moisture Contents determined by **ASTM D 2216** LL LL = F * FACTOR Ave. Average 19.2% One Point Liquid Limit 50.0 **Factor** Ν Ν **Factor** 20 0.974 26 1.005 0.979 27 1.009 21 45.0 Moisture Content 22 0.985 28 1.014 23 0.99 29 1.018 24 0.995 30 1.022 40.0 1.000 25 NP, Non-Plastic Liquid Limit 43 % 35.0 Plastic Limit 19 Plastic Index 24 30.0 CL **Group Symbol** 10 100 15 20 25 30 35 40 # of Drops Multipoint Method 1 One-point Method **Dry Preparation** Air Dried Wet Preparation Notes / Deviations / References: ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils 3/25/2019 David Grass, PE 3/29/2019 Rick Setzer Technician Name Date Technical Responsibility Date This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No. TR-D4318-T89-90

Revision No. 1

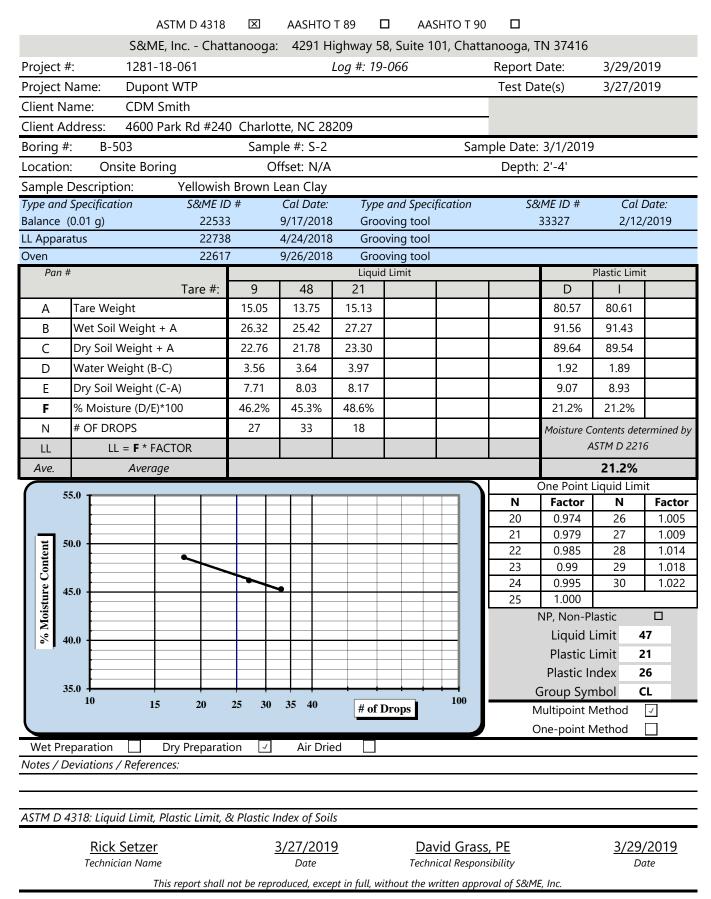
Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX



		ASTM D 4318	X	AASHTO	Т 89 🛚 🖺	AA C	SHTO T 90				
		S&ME, Inc Atla	anta: 4	350 River	Green Pa	rkway, Sı	uite 200, [Duluth, G	A 30096		
Project :	#:	1281-18-061						Report	Date:	3/29/1	19
Project	Name: I	Dupont WTP						Test Da	ate(s)	3/27-3/2	9/19
Client N	lame: (CDM Smith									
Client A	ddress: 4	4600 Park Road, #	240, Cha	rlotte, NC	28209			_			
Boring #	#: B-502	2	Samp	le #: ST-1			Sam	ple Date	: N/A		
Location	n: N/A		O	ffset: N/A	ı			Elevation	: 19.5'-21.	5'	
Sample	Description	n: Dark yell	owish bro	own clay v	with some	e sand ar	nd a trace	of mica			
	d Specification	n S&ME IL) #	Cal Date:	Туре	and Spec	ification	S8	RME ID #	Cal L	Date:
Balance		25128		4/4/2018		ving tool			26551	2/23/	/2019
LL Appar	ratus	31336		2/23/2019		ving tool					
Oven Pan	#	31332	2	2/21/2019		ving tool Limit			T	Plastic Limit	
Pun	#	Tare #:	1	2	3	4	5	6	7	8	9
A	Tare Weigh		14.95	15.19	15.41	•		0	15.71	16.00	<u> </u>
В	Wet Soil W		28.98	30.38	29.02				23.52	23.13	
С	Dry Soil W		25.26	26.26	25.14				22.24	21.97	
D	Water Wei		3.72	4.12	3.88				1.28	1.16	
E	Dry Soil We		10.31	11.07	9.73				6.53	5.97	
F	+	e (D/E)*100	36.1%	37.2%	39.9%				19.6%	19.4%	
N.	# OF DROF		32	25	16					ontents dete	erminad by
LL		F * FACTOR	32	23	10					ASTM D 2216	-
Ave.		Average			l						
		Average								19.5%	it
(65.0	Average						N	One Point Factor	19.5% Liquid Limi N	Factor
(Average						N 20	One Point Factor 0.974	19.5% Liquid Limi N 26	Factor 1.005
	65.0	Average						N 20 21	One Point	19.5% Liquid Limi N 26 27	1.005 1.009
	65.0	Average						N 20 21 22	One Point Factor 0.974 0.979 0.985	19.5% Liquid Limi N 26 27 28	1.005 1.009 1.014
	65.0	Average						N 20 21	One Point	19.5% Liquid Limi N 26 27	1.005 1.009
	65.0	Average						N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000	19.5% Liquid Limi N 26 27 28 29 30	1.005 1.009 1.014 1.018 1.022
oisture Content	65.0 660.0 555.0 50.0	Average						N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P	19.5% Liquid Limi	Factor 1.005 1.009 1.014 1.018
% Moisture Content	65.0 60.0 555.0 50.0 445.0	Average						N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I	19.5% Liquid Limi	1.005 1.009 1.014 1.018 1.022
% Moisture Content	65.0 660.0 555.0 50.0 445.0 445.0	Average						N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I	19.5% Liquid Limi	1.005 1.009 1.014 1.018 1.022
% Moisture Content	65.0 660.0 555.0 440.0 335.0	Average						N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 Index 1	1.005 1.009 1.014 1.018 1.022
% Moisture Content	65.0 660.0 555.0 50.0 445.0 445.0	Average 15 20	25 30	35 40	# 4 6 1	Drons	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir	19.5% Liquid Limi	1.005 1.009 1.014 1.018 1.022
% Moisture Content	65.0 66.0 55.0 55.0 44.0 335.0 25.0		25 30	35 40	# of I	Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
% Moisture Content	65.0 60.0 555.0 45.0 445.0 40.0 335.0 220.0	15 20				Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [1.005 1.009 1.014 1.018 1.022
Wet Pri	65.0 60.0 55.0 50.0 45.0 40.0 30.0 20.0	15 20 Dry Preparat		35 40		Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
Wet Pri	65.0 60.0 55.0 45.0 40.0 335.0 30.0 225.0 10	15 20 Dry Preparat				Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
Wet Pri	65.0 60.0 55.0 45.0 40.0 335.0 30.0 225.0 10	15 20 Dry Preparat				Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
Wet Pri Notes / L	65.0 60.0 55.0 45.0 445.0 40.0 335.0 30.0 225.0 10 Deviations / F	15 20 Dry Preparat	ion 🗆	Air Drie	ed 🗹	Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
Wet Pri Notes / L	65.0 60.0 55.0 45.0 45.0 40.0 335.0 30.0 225.0 10 deeparation [Deviations / F	Dry Preparat References:	ion □ & Plastic II	Air Drie	ed ☑	Drops	100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor
Wet Pri Notes / L	65.0 60.0 55.0 45.0 445.0 40.0 335.0 30.0 225.0 10 Deviations / F	Dry Preparat References: Limit, Plastic Limit, or	ion □ & Plastic II	Air Drie	ed ☑		100	N 20 21 22 23 24 25	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Plastic Ir Group Syr	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 mbol C Method [Factor 1.005 1.009 1.014 1.018 1.022 7 0 7 1.00
Wet Pri Notes / L	65.0 60.0 55.0 45.0 45.0 40.0 35.0 30.0 225.0 10 20.0 4318: Liquid	Dry Preparat References: Limit, Plastic Limit, or	ion □ & Plastic II	Air Drie	ed 🗹	Techi	nical Respon	N 20 21 22 23 24 25 Sibility	One Point Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-P Liquid I Plastic I Group Syr Multipoint N One-point N	19.5% Liquid Limi N 26 27 28 29 30 lastic Limit 3 Limit 2 ndex 1 nbol C Method [Factor 1.005 1.009 1.014 1.018 1.022 7 0 7 1.00

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX


Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Revision Date: 7/26/17

Revision Date: 7/26/17

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

ASTM D 4318 $|\mathbf{x}|$ AASHTO T 89 AASHTO T 90 S&ME, Inc. - Chattanooga: 4291 Highway 58, Suite 101, Chattanooga, TN 37416 Project #: 1281-18-061 Log #: 19-066 Report Date: 4/3/2019 **Dupont WTP** 4/1/2019 **Project Name:** Test Date(s) Client Name: **CDM Smith** Client Address: 4600 Park Rd #240 Charlotte, NC 28209 B-503 Sample #: ST-2 Boring #: Sample Date: 3/1/2019 Location: Offset: N/A Depth: 10'-11' **Onsite Boring** Sample Description: Yellowish Brown Lean Clay Type and Specification S&ME ID # Cal Date: Type and Specification S&ME ID # Cal Date: Balance (0.01 g) 22533 9/17/2018 Grooving tool 33327 2/12/2019 LL Apparatus 22738 4/24/2018 Grooving tool Oven 22617 9/26/2018 Grooving tool Liquid Limit Plastic Limit Pan # 14 89 Tare #: 6 C Χ 15.25 Tare Weight 15.31 13.69 81.66 81.65 Α В Wet Soil Weight + A 27.24 24.42 25.17 92.89 92.71 C 23.45 20.92 Dry Soil Weight + A 21.84 90.89 90.78 1.93 Water Weight (B-C) 3.79 3.50 3.33 2.00 D 9.23 Dry Soil Weight (C-A) 8.14 7.23 6.59 9.13 Ε F % Moisture (D/E)*100 46.6% 48.4% 50.5% 21.7% 21.1% # OF DROPS 32 24 Ν 18 Moisture Contents determined by **ASTM D 2216** LL LL = F * FACTOR Ave. 21.4% **Average** One Point Liquid Limit 60.0 **Factor** Ν Ν **Factor** 20 0.974 26 1.005 0.979 27 1.009 21 55.0 Moisture Content 22 0.985 28 1.014 23 0.99 29 1.018 24 0.995 30 1.022 50.0 1.000 25 NP, Non-Plastic 48 Liquid Limit % 45.0 Plastic Limit 21 Plastic Index 27 40.0 CL **Group Symbol** 10 100 15 20 25 30 35 40 # of Drops Multipoint Method 1 One-point Method **Dry Preparation** Air Dried Wet Preparation Notes / Deviations / References: ASTM D 4318: Liquid Limit, Plastic Limit, & Plastic Index of Soils David Grass, PE 3/27/2019 Rick Setzer 3/24/2019 Technician Name Date Technical Responsibility Date This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Revision Date: 7/26/17

		ASTM	D 4318	\times	AASHTO	T 89 🛭	□ AA	SHTO T 90					
		S&ME, Inc	Chat	tanooga:	4291 H	ighway 5	8, Suite 1	01, Chatta	anooga, T	N 37416			
Project	#:	1281-18-0	61			Log #: 19	-066		Report [Date:	3/27/20	019	
Project	Name:	Dupont W	ТР						Test Da	ite(s)	3/24/20	019	
Client N		CDM Smith											
Client A	ddress:	4600 Park	Rd #240	Charlot	tte. NC 28	209			_				
Boring #		504			ole #: S-5			Sam	ple Date: 2/25/2019				
Location		site Boring		Offset: N/A						8'-10'			
	Descripti		ellowish	n Brown F					2 0 0 0 0 0				
	d Specificat		S&ME IE		Cal Date:	Туре	and Speci	ification	S&	ME ID #	Cal I	Date:	
Balance			22533	3	9/17/2018		ving tool	•		33327	2/12	/2019	
LL Appar	ratus		22738	3	4/24/2018	Groo	oving tool						
Oven			22617	7	9/26/2018		oving tool						
Pan	#						d Limit				Plastic Limi	t	
	1		are #:	13	21	91				L	М		
Α	Tare We			13.51	15.13	13.09				81.35	81.35		
В		Weight + A		22.85	25.39	24.27				92.47	92.40		
С	Dry Soil	Weight + A		19.71	21.93	20.46				90.49	90.48		
D	Water W	/eight (B-C)		3.14	3.46	3.81				1.98	1.92		
Е	Dry Soil	Weight (C-A)		6.20	6.80	7.37				9.14	9.13		
F	% Moist	ure (D/E)*100		50.6%	50.9%	51.7%				21.7%	21.0%		
Ν	# OF DR	OPS		28	21	18				Moisture C	ontents det	ermined by	
LL	LI	L = F * FACTO	R							A	STM D 221	6	
Ave.		Average							<u> </u>		21.4%		
$\overline{}$	65.0 -	Average								One Point			
$\overline{}$	65.0	Average							N	Factor	Liquid Lim N	Factor	
$\overline{}$	65.0	Average							N 20	Factor 0.974	Liquid Lim N 26	Factor 1.005	
	65.0	Average							N 20 21	0.974 0.979	Liquid Lim N 26 27	1.005 1.009	
		Average							N 20 21 22	0.974 0.979 0.985	N 26 27 28	1.005 1.009 1.014	
	60.0	Average							N 20 21	0.974 0.979	Liquid Lim N 26 27	1.005 1.009	
		Average							N 20 21 22 23	0.974 0.979 0.985 0.99	Liquid Lim	1.005 1.009 1.014 1.018	
sture Content	60.0	Average							N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995	Liquid Lim N 26 27 28 29 30	1.005 1.009 1.014 1.018	
Moisture Content	60.0	Average							N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L	Liquid Lim N 26 27 28 29 30 lastic Limit 5	1.005 1.009 1.014 1.018 1.022	
sture Content	55.0	Average							N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi	Liquid Lim N 26 27 28 29 30 lastic Limit 5	1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0	Average							N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L	Liquid Lim N 26 27 28 29 30 lastic Limit 5	1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0		70	25 10	25.40			100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir	Liquid Lim N 26 27 28 29 30 lastic Limit 5 Limit 2 ndex 3	1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0	Average	20	25 30	35 40	# of 1	Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L	Liquid Lim N 26 27 28 29 30 lastic Limit 5 Limit 2 ndex 3	Factor	
% Moisture Content	55.0	15					Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Limit Adex Anbol Method	Factor 1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0	15 Dry F	20 Preparati		35 40		Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Limit Adex Anbol Method	Factor 1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0	15					Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Limit Adex Anbol Method	Factor 1.005 1.009 1.014 1.018 1.022	
% Moisture Content	55.0	15 Dry F					Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Limit Adex Anbol Method	Factor 1.005 1.009 1.014 1.018 1.022	
Wet Pr	55.0	15 Dry F / References:	Preparati	ion 🗸	Air Drie	ed 📗	Drops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Limit Adex Anbol Method	Factor 1.005 1.009 1.014 1.018 1.022	
Wet Pr	55.0	15 Dry F / References:	Preparati	ion ✓	Air Drie	ed 📗			N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit 5 Limit Adex 3 mbol Wethod Method	Factor	
Wet Pr	55.0 50.0 10 reparation Deviations 4318: Liqu	15 Dry F / References:	Preparati	ion ✓	Air Drie	ed 📗	<u>Da</u>	vid Grass	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pi Liquid L Plastic L Plastic Ir Group Syn	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Didex Anbol Method Method Method	Factor	
Wet Pr	55.0 50.0 10 reparation Deviations 4318: Liqu	15 Dry F / References: id Limit, Plasti Setzer cian Name	Preparati c Limit, &	ion ✓ & Plastic II	Air Drie	ed 🗌	<u>Da</u> Techn	vid Grass nical Respon	N 20 21 22 23 24 25	Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic Ir Group Syn Multipoint N One-point N	Liquid Lim N 26 27 28 29 30 lastic Limit Limit Didex Anbol Method Method Method	Factor	

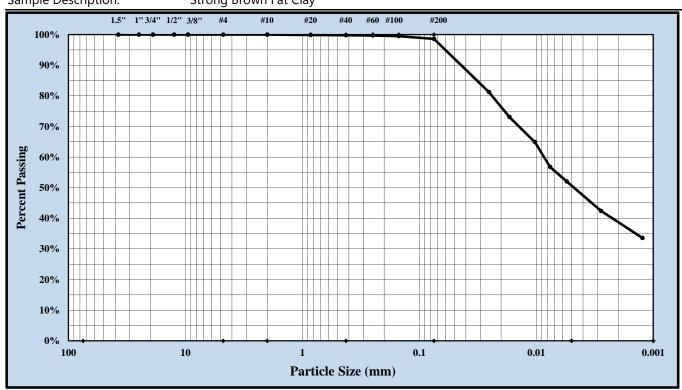
LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

Revision Date: 7/26/17

			ASTM D 4318	X	AASHTO	T 89 🗖	AAS	SHTO T 90				
		S&N	ME, Inc Chat	tanooga:	4291 Hi	ighway 58,	Suite 1	01, Chatta	anooga, T	N 37416		
Project	t #:	1281	1-18-061		I	Log #: 19-0	66		Report [Date:	3/29/20	019
Project	t Na	me: Dup	ont WTP						Test Da	ite(s)	3/28/20	019
Client	Nan	ne: CDM	1 Smith									
Client	Add	dress: 4600) Park Rd #240) Charlot	tte, NC 282	209						
Boring	#:	B-504		Samp	ole #: S-9			Sam	ple Date:	2/25/201	9	
Locatio	on:	Onsite Bo	oring	0	ffset: N/A				Depth:	16'-18'		
Sample	e De	escription:	Dark Bro	wn Lean	Clay							
Type ar	nd Sp	pecification	S&ME IE) #	Cal Date:	Туре а	nd Speci	fication	S&	ME ID #	Cal L	Date:
Balance	(0.	.01 g)	22533	3	9/17/2018		ng tool			33327	2/12/	/2019
LL Appa	aratı	us	22738	3	4/24/2018		ng tool					
Oven			22617	7	9/26/2018		ng tool			_		
Pai	n #		- "	0.4		Liquid L	imit				Plastic Limit	t
_			Tare #:	94	24	89				M	L	
Α	-	are Weight		15.59	15.33	15.23				81.35	81.35	
В	_	Vet Soil Weigh		26.86	29.93	28.81				88.73	87.61	
С	D	Dry Soil Weight	t + A	23.42	25.38	24.54				87.37	86.48	
D	٧	Vater Weight ((B-C)	3.44	4.55	4.27				1.36	1.13	
Е	D	Dry Soil Weight	t (C-A)	7.83	10.05	9.31				6.02	5.13	
F	%	6 Moisture (D/	'E)*100	43.9%	45.3%	45.9%				22.6%	22.0%	
N	#	OF DROPS		32	23	19				Moisture C	ontents dete	ermined by
LL		LL = F *	FACTOR								STM D 221	-
Ave.												
		Aver	rage								22.3%	
$\overline{}$	55.0		rage							One Point I		it
	55.0		rage						N	Factor	Liquid Limi N	Factor
	55.0		rage						N 20	Factor 0.974	Liquid Limi N 26	Factor 1.005
ııt	55.0		rage						N 20 21	0.974 0.979	Liquid Limi N 26 27	1.005 1.009
ontent			rage						N 20 21 22	0.974 0.979 0.985	N 26 27 28	1.005 1.009 1.014
e Content	50.0		rage						N 20 21	0.974 0.979	Liquid Limi N 26 27	1.005 1.009
sture Content			rage						N 20 21 22 23	0.974 0.979 0.985 0.99	N 26 27 28 29	Factor 1.005 1.009 1.014 1.018
Moisture Content	50.0		rage						N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995	Liquid Limi N 26 27 28 29 30	Factor 1.005 1.009 1.014 1.018
% Moisture Content	50.0		rage						N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000	N 26 27 28 29 30	1.005 1.009 1.014 1.018 1.022
Mois	50.0		rage						N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl	N 26 27 28 29 30 lastic .imit 4	1.005 1.009 1.014 1.018 1.022
Mois	50.0 45.0 40.0		rage						N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L	26 27 28 29 30 astic .imit 4	1.005 1.009 1.014 1.018 1.022
Mois	50.0				—————————————————————————————————————				N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L	N 26 27 28 29 30	1.005 1.009 1.014 1.018 1.022
Mois	50.0 45.0 40.0		15 20	25 30	35 40	# of Dr	ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L	Liquid Limit N 26 27 28 29 30 Asstic Limit Limit Adex Adex Adex Adex Adex Adex Adex Adex	1.005 1.009 1.014 1.018 1.022
Mois	50.0 45.0 40.0			25 30	35 40	# of Dr	ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
% Moi	50.00 45.00 40.00 35.00				35 40		ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
Wet F	50.0 45.0 40.0 35.0		15 20 Dry Preparati				ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
Wet F	50.0 45.0 40.0 35.0	10 aration	15 20 Dry Preparati				ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
Wet F	50.0 45.0 40.0 35.0	aration	Dry Preparati	on 🗸	Air Drie	d 🗌	ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
Wet F	50.0 45.0 40.0 35.0	aration	15 20 Dry Preparati	on 🗸	Air Drie	d 🗌	ops	100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limit N 26 27 28 29 30 astic Limit Limit Limit Limit Limit A Limit A A A A A A A A A A A A A A A A A A A	Factor
Wet F	50.0 45.0 40.0 35.0 7 Dev	aration arations / Reference	Dry Preparatiences:	on ✓	Air Drie	d 📗		100	N 20 21 22 23 24 25	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limi N 26 27 28 29 30 Asstic Limit Aimit Andex Conbol Method Method	Factor
Wet F	50.0 45.0 40.0 35.0 7 Dev	aration	Dry Preparati ences:	on ✓	Air Drie	d 📗	Dav		N 20 21 22 23 24 25 C	0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn	Liquid Limi N 26 27 28 29 30 lastic Limit Limit A Li	Factor
Wet F	50.0 45.0 40.0 35.0 7 Dev	aration	Dry Preparati ences:	on ✓	Air Drie	s 9	<u>Dav</u> Techn	vid Grass ical Respons	N 20 21 22 23 24 25 C C C C C C C C C C C C C C C C C C	Factor 0.974 0.979 0.985 0.99 0.995 1.000 NP, Non-Pl Liquid L Plastic L Plastic Ir Group Syn Multipoint N One-point N	Liquid Limi N 26 27 28 29 30 lastic Limit Limit A Li	Factor

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2


Revision Date: 08/29/17

ASTM D 6913 & D 7928

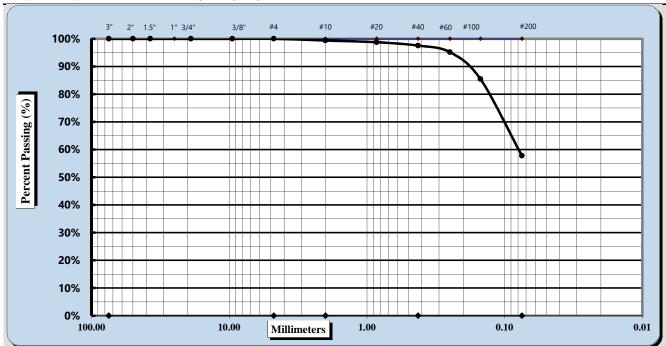
	S&ME, Inc Chattanoo	ga: 4291 High	way 58, Suite	e 101, Ch	attanooga, TN 374	416	
S&ME Project #:	1281-18-061				Report Date:		4/2/2019
Project Name:	Dupont WTP				Test Date(s):	3/2	28 - 4/1/2019
Client Name:	CDM Smith						
Address:	4600 Park Rd #240	Charlotte, NC 2	8209				
Boring #:	B-501	Sample #:	S-1		Sample D	ate:	2/28/2019
Location:	Onsite Boring	Offset:	N/A		De	pth:	3.5'-5'

Sample Description: Strong Brown Fat Clay

Cobbles	< 3	00 mm (12") and	d > 75 m	nm (3")	I	Fine Sand		< (0.425 i	mm and > 0	.075 r	mm (#200)
Gravel	*	< 75 mm and > 4	.75 mm	(#4)		Silt			< (0.075 and >	0.005	mm
Coarse Sand	<	4.75 mm and >2		Clay			< 0.005 mm					
Medium Sand	< 2	2.00 mm and > 0	.425 mm	า (#40)		Colloids				< 0.001	mm	
Maximum Particle S	ize:	#100			Gravel:	0	.0%			Silt		48.0%
Silt & Clay (% Passing #2	200):	98.6%		To	otal Sand:	1	.4%			Clay		50.6%
Apparent Relative Der	nsity	2.650										
Liquid L	imit	54		Pla	stic Limit		22		Pla	stic Index		32
Coarse S	and:	0.0%		Medi	um Sand:	0	.2%		F	ine Sand:		1.2%
Description of Sand and Gravel		Rounded 🗆	Angul	ar 🗵	Hard & D	Ourable	×	Soft		Weathere	d & F	riable 🛚
Mechanical Stirring Apparatus A		Dispersion Per	iod:	1 min.	Dispersing	g Agent:	Sodiun	n Hexai	metap	hosphate:		5.04g
References / Comments / Device	itions.	AASTM D	4318, [D 2487								
Apparent Relative Density is as	sume	d.										
David Grass BE						Dra	oject Enc	vinoer			4/2	/2019
<u>David Grass, PE</u>		-			_	<u>P10</u>	, ,					
Technical Responsibility			Signatu	ire			Position				D	ate
This i	eport	shall not be repr	oduced, e	except in	full, without ti	he writter	approval	of S&M	1E, Inc.			

SIEVE ANALYSIS OF SOIL

Form No TR-D6913-GR-01 Revision No. 1


Revision Date: 9/5/17

Single sieve set ASTM D6913

	S&ME, Inc	Chattanooga: 4291 Highway 58, Suite 101, Chattanoog	ga, TN 37416	
Project #: 12	281-18-061	Log #: 19-066	Record Date:	3/29/2019
Project Name:	Dupont WTP			
Client Name:	CDM Smith			
Received By:	D. Grass	Sampled by: Drillers	Date Sampled:	2/28/2019
Location: Or	nsite Boring			
Boring/Sample Id	. B-501 / S-7	Type: SS	Depth:	26'-28'

Sample Description: Brownish Gray Sandy Clay

Cobbles	< 300 mm (12") and > 75 mm (3")	Fine Sand	< 0.425 mm and > 0.075 mm
Gravel	< 75 mm and > 4.75 mm (#4)	Silt	< 0.075 and > 0.005 mm
Coarse Sand	< 4.75 mm and >2.00 mm (#10)	Clay	< 0.005 mm
Medium Sand	< 2.00 mm and > 0.425 mm (#40)	Colloids	< 0.001 mm

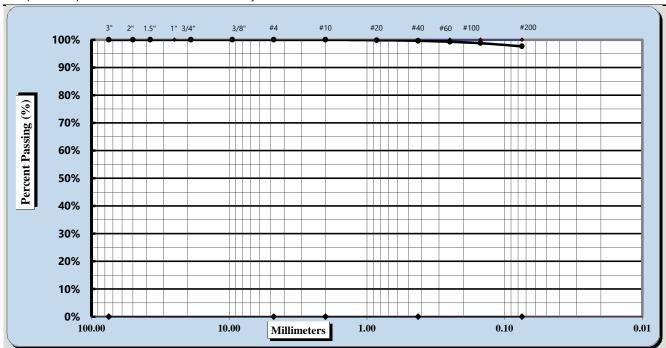
Method: A Proced	lure for obtai	ining Specimen: Moist	Dispersi	on Process: Agit	ation
Maximum Particle Size	#10	Coarse Sand	1%	Fine Sand	40%
Gravel	0%	Medium Sand	2%	Silt & Clay	58%
Liquid Limit	50	Plastic Limit	TNP	Plastic Index	TNP
Maximum Dry Density	TNP	Bulk Gravity (C127)	TNP	% Absorption	TNP
Optimum Moisture	TNP	Natural Moisture	TNP	CBR	TNP

Notes / Deviations / References:

David Grass, PE		Project Engineer	4/1/2019
Technical Responsibility	Signature	Position	Date
This report shall	not he reproduced except in full wi	thout the written approval of S&ME. Inc.	

SIEVE ANALYSIS OF SOIL

Form No TR-D6913-GR-01 Revision No. 1


Revision Date: 9/5/17

Single sieve set ASTM D6913

	S&ME, Inc	Chattanooga: 4291 Highway 58, Suite 101, Cha	ittanooga, TN 37416
Project #: 12	81-18-061	Log #: 19-066	Record Date: 3/29/2019
Project Name:	Dupont WTP		
Client Name:	CDM Smith		
Received By:	D. Grass	Sampled by: Drillers	Date Sampled: 2/26/2019
Location: On	site Boring		
Boring/Sample Id.	B-502/S-2	Type: SS	Depth: 8'-9.5'

Sample Description: Yellowish Brown Fat Clay

Cobbles	< 300 mm (12") and > 75 mm (3")	Fine Sand	< 0.425 mm and > 0.075 mm
Gravel	< 75 mm and > 4.75 mm (#4)	Silt	< 0.075 and > 0.005 mm
Coarse Sand	< 4.75 mm and >2.00 mm (#10)	Clay	< 0.005 mm
Medium Sand	< 2.00 mm and > 0.425 mm (#40)	Colloids	< 0.001 mm

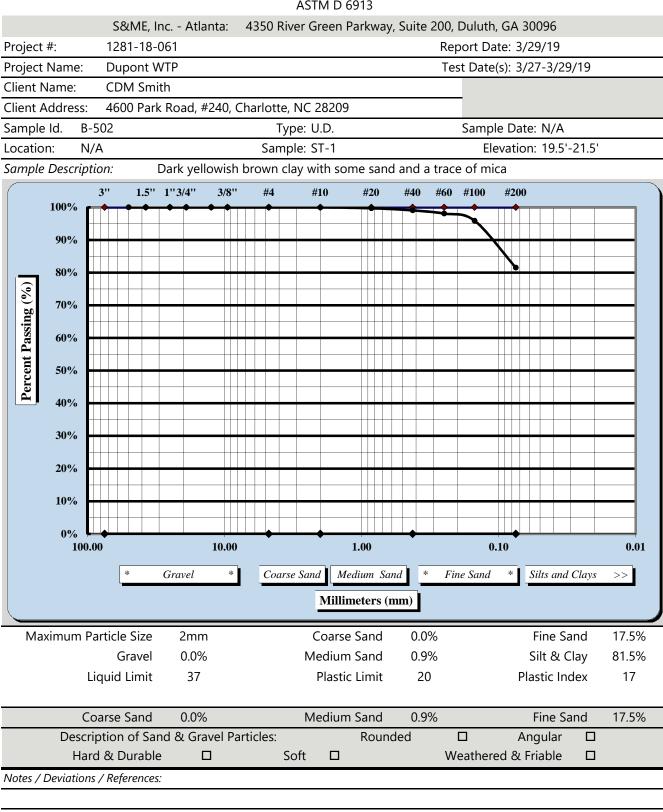
Method:	A Proce	dure for obtaini	ing Specimen: Moist	Dispersio	on Process: Agit	ation
Ma	aximum Particle Size	#10	Coarse Sand	0%	Fine Sand	2%
	Gravel	0%	Medium Sand	0%	Silt & Clay	98%
	Liquid Limit	51	Plastic Limit	21	Plastic Index	30
М	aximum Dry Density	TNP	Bulk Gravity (C127)	TNP	% Absorption	TNP
	Optimum Moisture	TNP	Natural Moisture	TNP	CBR	TNP

Notes / Deviations / References:

TNP - Test Not Performed

David Grass, PEProject Engineer4/1/2019Technical ResponsibilitySignaturePositionDateThis report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

SIEVE ANALYSIS OF SOILS


Revision No. 1

Revision Date: 8/10/17

Form No: TR-D422-WH-1Gb

ASTM D 6913

Signature

Raleigh, NC. 27616

Staff Professional II

Position

4/17/2019

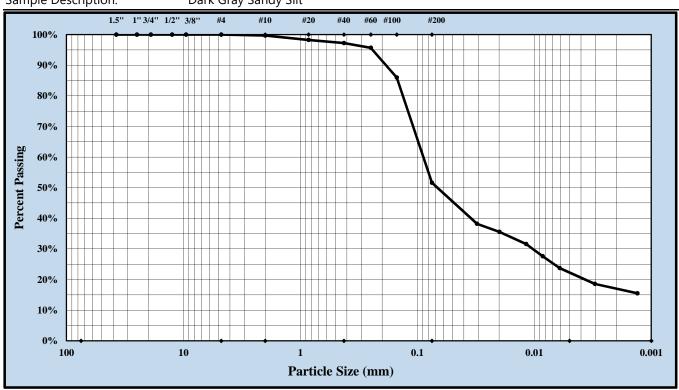
Date

Jacob T. David

Technical Responsibility

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2


Revision Date: 08/29/17

ASTM D 6913 & D 7928

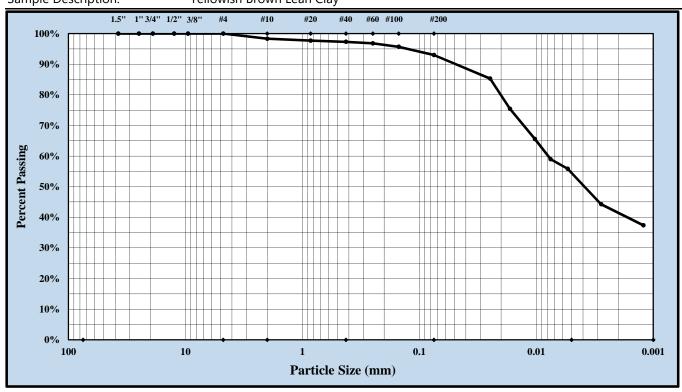
	S&ME, Inc Chattanoo	ga: 4291 High	way 58, Sui	te 101, C	hattanooga, TN 374	416	
S&ME Project #:	1281-18-061				Report Date:		4/3/2019
Project Name:	Dupont WTP				Test Date(s):	3/2	28 - 4/1/2019
Client Name:	CDM Smith						
Address:	4600 Park Rd #240	Charlotte, NC 2	8209				
Boring #:	B-502	Sample #:	S-7		Sample D	ate:	2/26/2019
Location:	Onsite Boring	Offset:	N/A		De	pth:	25.5'-27.5'

Sample Description: Dark Gray Sandy Silt

Cobbles	< 3	300 mm (12") and	d > 75 mm (3")	F	ine Sand		< 0.4	25 mm and > 0	0.075 mm (#200)
Gravel	٠	< 75 mm and > 4	.75 mm (#4)		Silt			< 0.075 and >	0.005 mm
Coarse Sand	<	4.75 mm and >2	.00 mm (#10)		Clay			< 0.005	mm
Medium Sand	< 2	2.00 mm and > 0	.425 mm (#40)		Colloids			< 0.001	mm
Maximum Particle S	ize:	#10		Gravel:	0.	0%		Sil	t 29.4%
Silt & Clay (% Passing #2	200):	51.6%	To	otal Sand:	48	.4%		Clay	/ 22.2%
Apparent Relative Der	nsity	2.650							
Liquid L	imit	NP	Pla	astic Limit	N	NΡ		Plastic Index	(NP
Coarse S	and:	0.3%	Medi	um Sand:	2.	4%		Fine Sand	: 45.6%
Description of Sand and Gravel		Rounded 🗆	Angular 🗵	Hard & D	urable	⊠ Sc	oft	□ Weather	ed & Friable 🛚
Mechanical Stirring Apparatus A		Dispersion Per	iod: 1 min.	Dispersing	Agent:	Sodium I	Hexame	etaphosphate:	5.01
References / Comments / Device	itions.	AASTM D	4318, D 2487						
Apparent Relative Density is as	sume	d.							
<u>David Grass, PE</u>					<u>Pro</u>	ject Engir	<u>neer</u>		<u>4/3/2019</u>
Technical Responsibility			Signature			Position			Date
This i	report	shall not be repr	oduced, except in	full, without th	ne written	approval of	S&ME,	Inc.	

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2


Revision Date: 08/29/17

ASTM D 6913 & D 7928

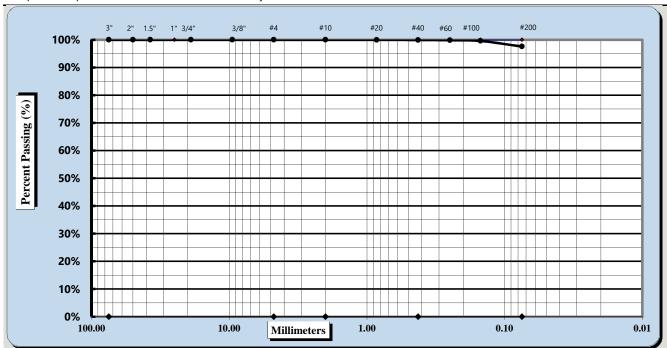
	S&ME, Inc Chattanoo	ga: 4291 High	way 58, Suit	e 101, Cl	nattanooga, TN 374	416	
S&ME Project #:	1281-18-061				Report Date:		4/3/2019
Project Name:	Dupont WTP				Test Date(s):	3/2	28 - 4/1/2019
Client Name:	CDM Smith						
Address:	4600 Park Rd #240	Charlotte, NC 2	8209				
Boring #:	B-503	Sample #:	S-2		Sample D	ate:	3/1/2019
Location:	Onsite Boring	Offset:	N/A		De	pth:	2'-4'

Sample Description: Yellowish Brown Lean Clay

Cobbles	< 3	300 mm (12") and	d > 75 mm (3")	F	ine Sand		< 0.425	5 mm and > 0.0	75 mm (#200)
Gravel		< 75 mm and > 4	.75 mm (#4)		Silt		<	0.075 and > 0	.005 mm
Coarse Sand	<	4.75 mm and >2	.00 mm (#10)		Clay			< 0.005 m	m
Medium Sand	< 2	2.00 mm and > 0	.425 mm (#40)		Colloids			< 0.001 m	m
Maximum Particle S	ize:	#20		Gravel:	0.0	%		Silt	38.5%
Silt & Clay (% Passing #2	200):	93.0%	To	tal Sand:	7.0	%		Clay	54.5%
Apparent Relative Der	nsity	2.650							
Liquid L	imit	47	Pla	stic Limit	2	1	Pl	lastic Index	26
Coarse S	and:	1.7%	Medi	um Sand:	1.0	%		Fine Sand:	4.3%
Description of Sand and Gravel		Rounded \square	Angular ⊠	Hard & D	urable	⊠ Sc	oft 🗆	Weathered	& Friable □
Mechanical Stirring Apparatus A		Dispersion Per	iod: 1 min.	Dispersing	Agent:	Sodium I	Hexameta	phosphate:	5.06
References / Comments / Device	itions.	: AASTM D	4318, D 2487						
Apparent Relative Density is as	sume	ed.							
<u>David Grass, PE</u>					<u>Proj</u>	ect Engir	<u>neer</u>	<u> </u>	<u>1/2/2019</u>
Technical Responsibility			Signature			Position			Date
This i	report	shall not be repre	oduced, except in j	^f ull, without th	ne written d	pproval of	S&ME, In	с.	

SIEVE ANALYSIS OF SOIL

Form No TR-D6913-GR-01 Revision No. 1


Revision Date: 9/5/17

Single sieve set ASTM D6913

-061	Log #: 19-066	5	Record Date:	4/3/2019
ont WTD				4/3/2019
oont WTP				
M Smith				
rass S	Sampled by: Drillers		Date Sampled:	3/1/2019
oring				
)3 / ST-2	Туре:	UD	Depth: 10	ט'-11'
ira or	ass S	Sampled by: Drillers ing	Sampled by: Drillers ing	Sampled by: Drillers Date Sampled: ing

Sample Description: Yellowish Brown Lean Clay

Cobbles	< 300 mm (12") and > 75 mm (3")	Fine Sand	< 0.425 mm and > 0.075 mm
Gravel	< 75 mm and > 4.75 mm (#4)	Silt	< 0.075 and > 0.005 mm
Coarse Sand	< 4.75 mm and >2.00 mm (#10)	Clay	< 0.005 mm
Medium Sand	< 2.00 mm and > 0.425 mm (#40)	Colloids	< 0.001 mm

	Method:	A Pro		edure for obtaining Specimen: Moist			on Process: Agit	ation	
Maximum Particle Size			Size	#100	Coarse Sand	0%	Fine Sand	2%	
		Gr	avel	0%	Medium Sand	0%	Silt & Clay	98%	
		Liquid L	imit	48	Plastic Limit	21	Plastic Index	27	
	Ma	aximum Dry Der	nsity	TNP	Bulk Gravity (C127)	TNP	% Absorption	TNP	
		Optimum Mois	ture	TNP	Natural Moisture	TNP	CBR	TNP	

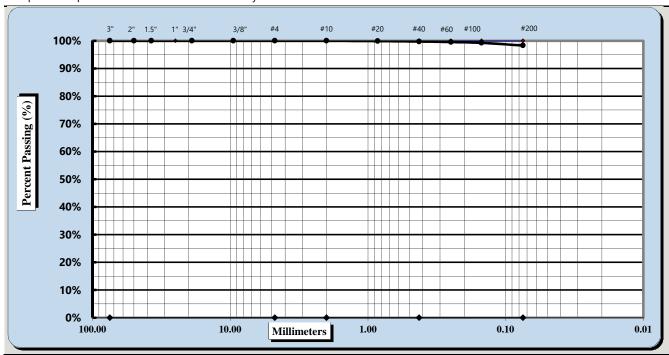
Notes / Deviations / References:

TNP - Test Not Performed

David Grass, PEProject Engineer4/1/2019Technical ResponsibilitySignaturePositionDate

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

SIEVE ANALYSIS OF SOIL


Form No TR-D6913-GR-01 Revision No. 1

Revision Date: 9/5/17

Single sieve set **ASTM D6913**

	S&ME, Inc Chatta	anooga: 4291 Highway 58, Suite 101, Chatt	anooga, TN 37416
Project #: 12	281-18-061	Log #: 19-066	Record Date: 3/29/2019
Project Name:	Dupont WTP		
Client Name:	CDM Smith		
Received By:	D. Grass	Sampled by: Drillers	Date Sampled: 2/25/2019
Location: Or	nsite Boring		
Boring/Sample Id.	. B-504 / S-5	Type: SS	Depth: 8'-10'
Sample Description	on: Yellowish Brown	Fat Clay	

Cobbles	< 300 mm (12") and > 75 mm (3")	Fine Sand	< 0.425 mm and > 0.075 mm
Gravel	< 75 mm and > 4.75 mm (#4)	Silt	< 0.075 and > 0.005 mm
Coarse Sand	< 4.75 mm and >2.00 mm (#10)	Clay	< 0.005 mm
Medium Sand	< 2.00 mm and > 0.425 mm (#40)	Colloids	< 0.001 mm

Method: A Pro	ocedure for obtaini	ng Specimen: Moist	Dispersion	on Process: Agita	ation
Maximum Particle Siz	e #10	Coarse Sand	0%	Fine Sand	1%
Grave	el 0%	Medium Sand	0%	Silt & Clay	98%
Liquid Lim	it 51	Plastic Limit	21	Plastic Index	30
Maximum Dry Densit	ty TNP	Bulk Gravity (C127)	TNP	% Absorption	TNP
Optimum Moistur	re TNP	Natural Moisture	TNP	CBR	TNP

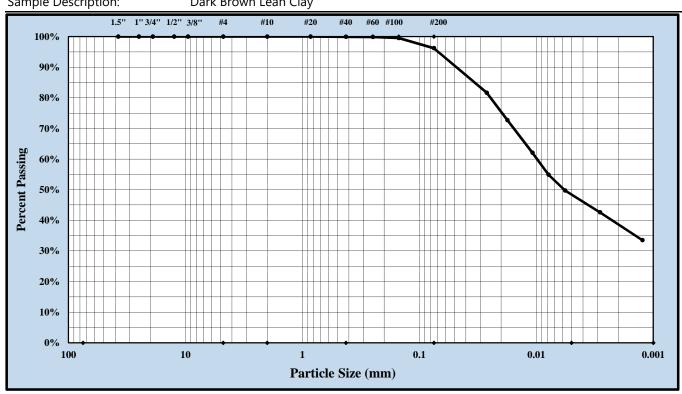
Notes / Deviations / References:

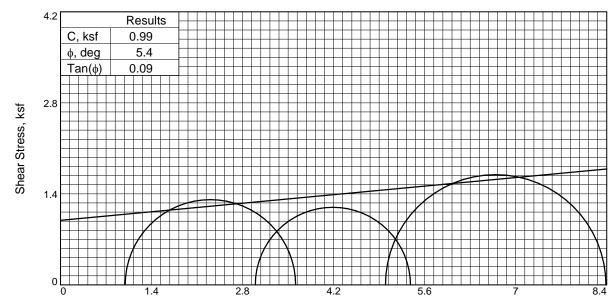
TNP - Test Not Performed

David Grass, PE **Project Engineer** 4/1/2019 Technical Responsibility Position Date Signature

PARTICLE SIZE ANALYSIS OF SOIL

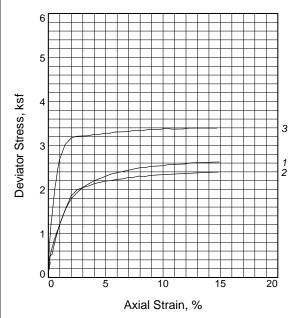
Form No. TR-D422-3 Revision No. 2


Revision Date: 08/29/17


ASTM D 6913 & D 7928

	S&ME, Inc Chattanoo	ga: 4291 High	way 58, Suit	e 101, CI	nattanooga, TN 374	416	
S&ME Project #:	1281-18-061				Report Date:		4/2/2019
Project Name:	Dupont WTP				Test Date(s):	3/2	28 - 4/1/2019
Client Name:	CDM Smith						
Address:	4600 Park Rd #240	Charlotte, NC 2	8209				
Boring #:	B-504	Sample #:	S-9		Sample D	ate:	2/25/2019
Location:	Onsite Boring	Offset:	N/A		De	pth:	16'-18'

Sample Description: Dark Brown Lean Clay



Cobbles	< 300 mm (12") and > 75 mm (3")				Fine Sand			< (< 0.425 mm and > 0.075 mm (#200)			
Gravel	< 75 mm and > 4.75 mm (#4)				Silt				< 0.075 and > 0.005 mm			
Coarse Sand	Coarse Sand < 4.75 mm and >2.00 mm (#10)			(#10)	Clay				< 0.005 mm			
Medium Sand	< 2	2.00 mm and > 0	.425 mm	n (#40)	Colloids				< 0.001 mm			
Maximum Particle S	ize:	#20			Gravel:	0	.0%			Silt	4	7.7%
Silt & Clay (% Passing #2	200):	96.2%		To	tal Sand:	3	.8%			Clay	4	8.5%
Apparent Relative Der	nsity	2.650										
Liquid L	imit	45		Pla	stic Limit		22		Pla	stic Index		23
Coarse S	and:	0.0%		Medi	um Sand:	0	.1%		F	ine Sand:	:	3.7%
Description of Sand and Gravel		Rounded \square	Angul	ar 🗵	Hard & D	urable	X	Soft		Weathere	d & Fri	able 🛚
Mechanical Stirring Apparatus A		Dispersion Per	iod:	1 min.	Dispersing	J Agent:	Sodiu	m Hexa	metap	hosphate:		5.09
References / Comments / Device	itions.	AASTM D	4318, [2487								
Apparent Relative Density is as	sume	d.										
David Grass, PE						Pro	oject En	nineer			4/2/2	2019
Technical Responsibility			Signature			Position			<u> </u>		Da	
. This i	report	shall not be repr	oduced, e	except in	full, without ti	he writter	approval	of S&M	1E, Inc.			

Sample No.

		Water Content, %	26.1	27.5	26.4	
		Dry Density, pcf	98.7	97.3	98.0	
	<u>.</u>	Saturation, %	97.1	99.0	96.6	
	Initial	Void Ratio	0.7386	0.7645	0.7510	
		Diameter, in.	2.874	2.877	2.872	
		Height, in.	6.035	6.073	6.132	
3		Water Content, %	26.1	27.5	26.4	
	ي. ا	Dry Density, pcf	98.7	97.3	98.0	
1	At Test	Saturation, %	97.1	99.0	96.6	
?	=	Void Ratio	0.7386	0.7645	0.7510	
	~	Diameter, in.	2.874	2.877	2.872	
		Height, in.	6.035	6.073	6.132	
	Stra	ain rate, %/min.	1.00	1.00	1.00	
	Bad	ck Pressure, psi	0.00	0.00	0.00	
	Cel	ll Pressure, psi	6.90	20.80	34.70	
	Fai	I. Stress, ksf	2.62	2.39	3.39	
	Ult.	Stress, ksf	2.63	2.40	3.40	
	σ ₁	Failure, ksf	3.62	5.38	8.39	
	σ3	Failure, ksf	0.99	3.00	5.00	

1

2

3

Type of Test:

Unconsolidated Undrained

Sample Type: Intact

Description: Dark yellowish brown clay with some

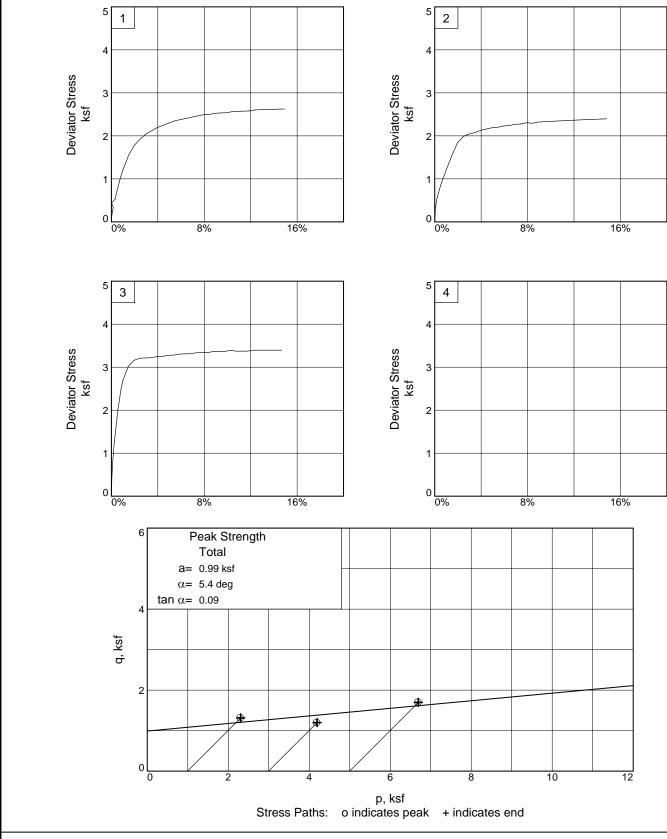
sand and a trace of mica

LL= 37 **PL=** 20 **PI=** 17

Assumed Specific Gravity= 2.75 Remarks: Trimmed specimens to length.

Project: Dupont WTP

Location: B-502


Sample Number: ST-1 Depth: 19.5'-21.5'

Client: CDM Smith 4600 Park Road, #240, Charlotte, NC 28209

TRIAXIAL SHEAR TEST REPORT

S&ME, Inc. Duluth, Georgia

Figure 1

Client: CDM Smith 4600 Park Road, #240, Charlotte, NC 28209

Project: Dupont WTP

Location: B-502 **Sample Number:** ST-1 **Figure** 2 **Depth:** 19.5'-21.5'

S&ME, Inc. **Project No.:** 1281-18-061

Form No: TR-D4972-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

Sample Log No.: 43-2830

AASHTO T 289

S&ME , Inc., 1413	Topside Road,	Louisville, Tl	N 37777
------------------------------	---------------	----------------	---------

Project #:	1281-18-061	Report Date:	4/10/2019
Project Name:	Dupont WTP	Test Date(s):	4/9/2019

Client Name: CDM Smith

Client Address: 4600 Park Road #240, Charlotte, NC 28209

Sample ID: B-501 Sample No: S-4

Depth: 18.5 - 20.5 ft

Sample Description: Light yellowish brown clay

Equipment:

 Balance
 S&ME ID#
 18435
 Cal. Date:
 4/2/2019
 Due:
 4/2/2020

 Sieve:
 #10
 S&ME ID#
 2481
 Cal. Date:
 1/29/2019
 Due:
 7/29/2019

pH Meter: S&ME ID# 16576 Cal. Date: 4/9/2019

pH Meter Calibration

Buffer Solution	Results
pH buffer <u>4.0</u>	4.01
pH buffer 7.0	7.00
pH buffer <u>10.0</u>	10.10
Buffer Temperature ⁰ C	23.6°C

Measuring pH of Soil

	Beaker #:	6
Measurements	•	
Weight of Air Dry Soil (g)	30.0	
Distilled Water (ml)	30.0	
Temperature ⁰ C	23.5°C	,
pH Reading	4.6	

Notes / Deviations / References: AASHTO T 289 Determining pH of Soil for Use in Corrosion Testing

Tori Igoe 4/9/2019
Technician Name Date

Michael D. Kelso, E.I.

Technical Responsibility

Signature

Staff Professional

Position

4/10/2019 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No: TR-D4972-1

Revision No. 0

Revision Date: 07/10/08

pH of Soil

Sample Log No.: 43-2830

AASHTO T 289

S&ME, Inc.,	1413 T	'opside	Road,	Louisville,	TN 37777

Project #:	1281-18-061	Report Date:	4/10/2019
Project Name:	Dupont WTP	Test Date(s):	4/9/2019

Client Name: CDM Smith

Client Address: 4600 Park Road #240, Charlotte, NC 28209

Sample ID: B-504 Sample No: S-3

Depth: 4 - 6 ft

Sample Description: Light yellowish brown clay

Equipment:

Balance 18435 Cal. Date: S&ME ID# 4/2/2019 Due: 4/2/2020 Sieve: #10 S&ME ID# 2481 Cal. Date: Due: 7/29/2019 1/29/2019 pH Meter: S&ME ID# 16576 Cal. Date: 4/9/2019

pH Meter Calibration

Buffer Solution	Results
pH buffer <u>4.0</u>	4.01
pH buffer 7.0	7.00
pH buffer <u>10.0</u>	10.10
Buffer Temperature ⁰ C	23.6°C

Measuring pH of Soil

	Beaker #:	6
Measurements	_	
Weight of Air Dry Soil (g)	30.0	
Distilled Water (ml)	30.0	
Temperature ⁰ C	23.5°C	7
pH Reading	4.8	

Notes / Deviations / References: AASHTO T 289 Determining pH of Soil for Use in Corrosion Testing

Tori Igoe 4/9/2019
Technician Name Date

Michael D. Kelso, E.I.

Technical Responsibility

Signature

Staff Professional

Position

4/10/2019 Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Microbac Laboratories, Inc., Maryville CERTIFICATE OF ANALYSIS

1904972

S & ME, Inc.

Project Name: 1281-18-061

Michael Kelso 1413 Topside Rd. Louisville, TN 37777 Project / PO Number: N/A Received: 04/02/2019 Reported: 04/09/2019

Analytical Testing Parameters

Client Sample ID: B-501

Sample Matrix: Soil Collected By: Client

Lab Sample ID: 1904972-01 Collection Date: 02/28/2019 12:00

Analyses Subcontracted to: TestAmerica Nashville

Anions, Ion Chromatography Soluble	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: 9056							
Chloride	<10.1	10.1	mg/Kg	Н		04/05/19 1759	SW1
Sulfate	10.3	10.1	mg/Kg	Н		04/05/19 1759	SW1

Client Sample ID: B-504

Sample Matrix: Soil Collected By: Client

Lab Sample ID: 1904972-02 Collection Date: 02/25/2019 12:00

Analyses Subcontracted to: TestAmerica Nashville

Anions, Ion Chromatography Soluble	Result	RL	Units	Note	Prepared	Analyzed	Analyst
Method: 9056							
Chloride	<9.85	9.85	mg/Kg	Н		04/05/19 1815	SW1
Sulfate	15.1	9.85	mg/Kg	Н		04/05/19 1815	SW1

Definitions

H: Sample was prepped or analyzed beyond the specified holding time

MDL: Minimum Detection Limit

RL: Reporting Limit

Form No. TR-43-D7012C-02

UNCONFINED COMPRESSION (ASTM D7012 Method C)

Revision No.: 0 Revision Date: 08/22/18

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 37777

Project Name: <u>Dupont WTP</u> Project Number: 1281-18-061

Report Date: April 5, 2019
Reviewed By: Jason B. Burgess

(*						
Moisture	(%)	0.1	0.1	0.3	0.1	0.1
Strength	(bsi)	35,030	34,337	24,905	28,611	41,652
Maximum	Load (lbs)	96,333	94,426	68,489	78,679	113,293
Loading Rate	(psi/sec)	111	108	105	102	112
Unit Weight	(lbs/ft^3)	171.5	174.9	166.8	170.1	175.2
Area	(in^2)	2.75	2.75	2.75	2.75	2.72
Shape	(See Key)	Α	Α	Α	Α	Α
Dimensions, in.	Diameter	1.87	1.87	1.87	1.87	1.86
Dimen	Length	4.21	4.16	4.07	4.19	4.26
Donth (#)	(וו) בוולפם	36.25 - 36.60	47.00 - 47.40	31.85 - 32.20	38.80 - 39.15	37.35 - 37.70
Sample	No.	RC	RC	RC	RC	RC
ON Sciro	DOILIG INC.	B-501	B-501	B-502	B-502	B-503

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

Loading rates were selected to target reaching failure between 2 and 15 minutes.

Fest results for specimens not meeting the requirements of ASTM D4543-08^{c1} may differ from a test specimen that meets the requirements of ASTM D4543.

SHAPE KEY

ASTM D4543-08^{et} Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural been determined by trial that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has capping the ends of the specimen as discussed in this practice is permitted."

- Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{et} (side straightness, end flatness & parallelism, and end perpendicularity to axis) ⋖
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness. Specimen prepared to closest tolerances practicable. Ω
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{e1} for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable. O
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{et} for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable. Ω
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08^{e1} for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness and parallelism. Specimen prepared to closest tolerances practicable. ш

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

1413 Topside Road, Louisville, TN 37777

Project: Dupont WTP Diameter (in): 1.87 Date: 4/3/2019 Tested by: Project No.: 1281-18-061 Length (in): 4.21 VLI Boring Id: B-501 Unit Weight (pcf): 171.5 Reviewed by: BKP

Moisture Content (%): 0.1

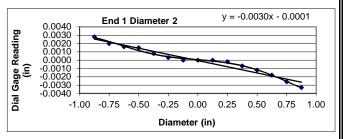
Depth (ft): 36.25 - 36.60

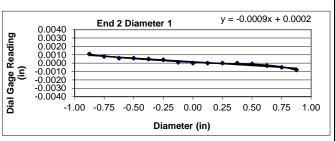
RC

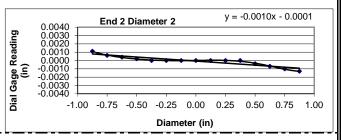
Sample No.:

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met? YES


End Flatness and Parallelism Readings (Procedure FP1)						
Position	End 1	End 1(90)	End 2	End 2(90)		
- 7/8	0.0007	0.0028	0.0011	0.0011		
- 6/8	0.0002	0.0020	0.0008	0.0006		
- 5/8	0.0001	0.0016	0.0006	0.0004		
- 4/8	0.0001	0.0015	0.0006	0.0002		
- 3/8	0.0000	0.0008	0.0005	0.0000		
- 2/8	0.0000	0.0003	0.0004	0.0000		
- 1/8	0.0000	0.0000	0.0001	0.0000		
0	0.0000	0.0000	0.0000	0.0000		
1/8	0.0000	0.0000	0.0000	0.0000		
2/8	0.0000	-0.0002	0.0000	0.0000		
3/8	0.0000	-0.0007	0.0000	0.0000		
4/8	0.0000	-0.0012	-0.0001	-0.0004		
5/8	-0.0002	-0.0018	-0.0003	-0.0007		
6/8	-0.0004	-0.0026	-0.0005	-0.0010		
7/8	-0.0006	-0.0033	-0.0008	-0.0013		


Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.


> Flatness Tolerance Met? **YES**

> > -0.00042

y = -0.0004x - 0.0000End 1 Diameter 1 Dial Gage Reading (in) 0.0030 0.0020 0.0010 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Diameter (in)

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelism Diameter 1	
Slope of Best Fit Line:	
Angle of Best Fit Line:	

End 1:

End 2:

-0.02390 Slope of Best Fit Line: -0.00088 Angle of Best Fit Line: -0.05042

Max Angular Difference: 0.03

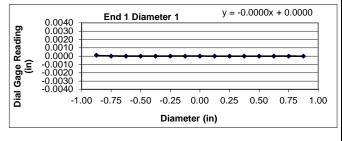
Perpendicularity (Procedure P1) is met when the difference between
max and min readings along each line divided by the diameter is
l≤ 0.0043.

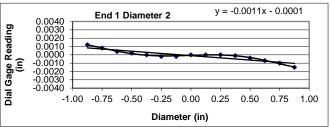
	3		
	Parrallelism Diameter 2		
End 1:	Slope of Best Fit Line:	-0.00296	
	Angle of Best Fit Line:	-0.16960	
End 2:	Slope of Best Fit Line:	-0.00098	
	Angle of Best Fit Line:	-0.05615	
	Max Angular Difference:	-0.11	
Parallelism Tolerance Met? YES			

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0013	0.0007	YES
End 1 Diam 2	0.0061	0.0033	YES
End 2 Diam 1	0.0019	0.0010	YES
End 2 Diam 2	0.0024	0.0013	YES
Perpendicularity T	YES		

1413 Topside Road, Louisville, TN 37777

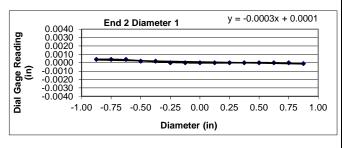
Project: Dupont WTP Diameter (in): 1.87 Date: 4/3/2019 Project No.: 1281-18-061 Length (in): 4.16 Tested by: Boring Id: B-501 Unit Weight (pcf): 174.9 Reviewed by: BKP


Sample No.: RC Moisture Content (%): 0.1


Depth (ft): 47.00 - 47.40

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?


End Flatness and Parallelism Readings (Procedure FP1)							
Position	End 1	End 1(90)	End 2	End 2(90)			
- 7/8	0.0001	0.0012	0.0004	0.0025			
- 6/8	0.0000	0.0008	0.0004	0.0021			
- 5/8	0.0000	0.0004	0.0004	0.0015			
- 4/8	0.0000	0.0002	0.0002	0.0012			
- 3/8	0.0000	0.0000	0.0002	0.0007			
- 2/8	0.0000	-0.0002	0.0000	0.0003			
- 1/8	0.0000	-0.0002	0.0000	0.0000			
0	0.0000	0.0000	0.0000	0.0000			
1/8	0.0000	0.0000	0.0000	0.0000			
2/8	0.0000	0.0000	0.0000	-0.0002			
3/8	0.0000	-0.0001	0.0000	-0.0005			
4/8	0.0000	-0.0004	0.0000	-0.0009			
5/8	0.0000	-0.0007	0.0000	-0.0017			
6/8	0.0000	-0.0010	0.0000	-0.0022			
7/8	0.0000	-0.0015	-0.0001	-0.0025			

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

> Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

Parrallelisn	n Diameter 1
--------------	--------------

	Parrallelisin Diameter i	
End 1:	Slope of Best Fit Line:	-0.00002
	Angle of Best Fit Line:	-0.00115
End 2:	Slope of Best Fit Line:	-0.00027
	Angle of Best Fit Line:	-0.01522
	Max Angular Difference:	0.01
	Parrallelism Diameter 2	

	0.0040 -	End 2	2 Diam	eter 2		y = -0.0	00257x	+ 0.000	002
Dial Gage Reading (in)	0.0040 - 0.0030 - 0.0020 - 0.0010 - 0.0000 - -0.0020 - -0.0030 - -0.0040 - -1.	00 -0.75	-0.50		0.00 eter (in	0.25	0.50	0.75	1.00

Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is ≤ 0.0043.

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0001	0.0001	YES
End 1 Diam 2	0.0027	0.0014	YES
End 2 Diam 1	0.0005	0.0003	YES
End 2 Diam 2	0.0050	0.0027	YES
Perpendicularity 1	<u>YES</u>		

Parallelism Tolerance Met?

	i diranensin Diameter 2	
End 1:	Slope of Best Fit Line:	-0.00107
	Angle of Best Fit Line:	-0.06106
End 2:	Slope of Best Fit Line:	-0.00257
	Angle of Best Fit Line:	-0.14700
	Max Angular Difference:	0.09

YES

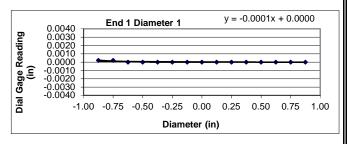
1413 Topside Road, Louisville, TN 37777

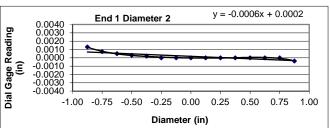
 Project:
 Dupont WTP
 Diameter (in): 1.87
 Date: 4/3/2019

 Project No.:
 1281-18-061
 Length (in): 4.07
 Tested by: VLI

 Boring Id:
 B-502
 Unit Weight (pcf): 166.8
 Reviewed by: BKP

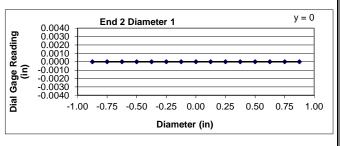
Sample No.: RC Moisture Content (%): 0.3


Depth (ft): 31.85 - 32.20


Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? YES Straightness Tolerance Met? YES

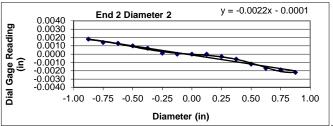
End Flatness and Parallelism Readings (Procedure FP1)


End Flatness and Parallelism Readings (Procedure FP1)							
Position	End 1	End 1(90)	End 2	End 2(90)			
- 7/8	0.0002	0.0013	0.0000	0.0018			
- 6/8	0.0002	0.0007	0.0000	0.0014			
- 5/8	0.0000	0.0005	0.0000	0.0013			
- 4/8	0.0000	0.0003	0.0000	0.0010			
- 3/8	0.0000	0.0002	0.0000	0.0007			
- 2/8	0.0000	0.0000	0.0000	0.0001			
- 1/8	0.0000	0.0000	0.0000	0.0000			
0	0.0000	0.0000	0.0000	0.0000			
1/8	0.0000	0.0000	0.0000	0.0000			
2/8	0.0000	0.0000	0.0000	-0.0003			
3/8	0.0000	0.0000	0.0000	-0.0006			
4/8	0.0000	0.0000	0.0000	-0.0012			
5/8	0.0000	0.0000	0.0000	-0.0017			
6/8	0.0000	0.0000	0.0000	-0.0019			
7/8	0.0000	-0.0004	0.0000	-0.0022			

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.


Parrallelism	Diameter 1	
--------------	------------	--

End 1:

End 2:

Parallelism Tolerance Met?

	i arranensin Diameter i	
End 1:	Slope of Best Fit Line:	-0.00007
	Angle of Best Fit Line:	-0.00426
End 2:	Slope of Best Fit Line:	0.00000
	Angle of Best Fit Line:	0.00000
	Max Angular Difference:	0.00
	Parrallelism Diameter 2	

Parrallelism Diameter 2	
Slope of Best Fit Line:	-0.00059
Angle of Best Fit Line:	-0.03379
Slope of Best Fit Line:	-0.00218
Angle of Best Fit Line:	-0.12490
Max Angular Difference:	0.09

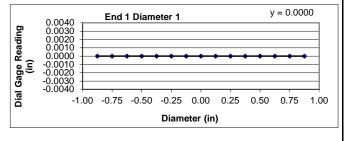
YES

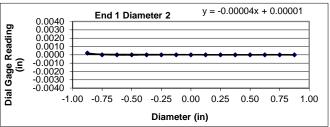
Perpendicularity (Procedure P1) is met when the difference between
max and min readings along each line divided by the diameter is
≤ 0.0043.

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0002	0.0001	YES
End 1 Diam 2	0.0017	0.0009	YES
End 2 Diam 1	0.0000	0.0000	YES
End 2 Diam 2	0.0040	0.0021	YES
Perpendicularity To	<u>YES</u>		

1413 Topside Road, Louisville, TN 37777

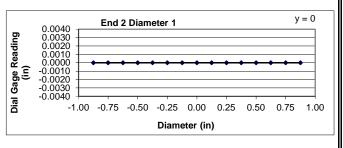
Project: Dupont WTP Diameter (in): 1.87 Date: 4/3/2019 Project No.: 1281-18-061 Length (in): 4.19 Tested by: Boring Id: B-502 Unit Weight (pcf): 170.1 Reviewed by: BKP


Sample No.: RC Moisture Content (%): 0.1


Depth (ft): 38.80 - 39.15

Deviation From Straightness (Procedure S1)

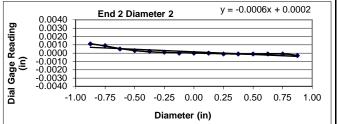
Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?


End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	0.0000	0.0002	0.0000	0.0011
- 6/8	0.0000	0.0000	0.0000	0.0009
- 5/8	0.0000	0.0000	0.0000	0.0005
- 4/8	0.0000	0.0000	0.0000	0.0003
- 3/8	0.0000	0.0000	0.0000	0.0002
- 2/8	0.0000	0.0000	0.0000	0.0001
- 1/8	0.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0000	0.0000	0.0000	0.0000
2/8	0.0000	0.0000	0.0000	-0.0001
3/8	0.0000	0.0000	0.0000	-0.0001
4/8	0.0000	0.0000	0.0000	-0.0001
5/8	0.0000	0.0000	0.0000	-0.0001
6/8	0.0000	0.0000	0.0000	-0.0001
7/8	0.0000	0.0000	0.0000	-0.0003

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.

> Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.


Parrallelism	Diameter 1
--------------	------------

End 1:

End 2:

Parallelism Tolerance Met?

End 1:	Oleman of Death Eit Lines	
Liid I.	Slope of Best Fit Line:	0.00000
	Angle of Best Fit Line:	0.00000
End 2:	Slope of Best Fit Line:	0.00000
	Angle of Best Fit Line:	0.00000
	Max Angular Difference:	0.00

Parrallelism Diameter 2	
Slope of Best Fit Line:	-0.00004
Angle of Best Fit Line:	-0.00229
Slope of Best Fit Line:	-0.00062
Angle of Best Fit Line:	-0.03552
Max Angular Difference:	0.03

YES

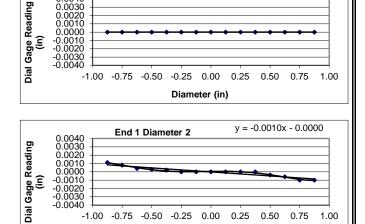
Perpendicularity (Procedure P1) is met when the difference between
max and min readings along each line divided by the diameter is
≤ 0.0043.

	Difference b/w max & min	Divide by Diameter	Meets Tolerance
	D/W IIIAX & IIIIII	Diameter	
End 1 Diam 1	0.0000	0.0000	YES
End 1 Diam 2	0.0002	0.0001	YES
End 2 Diam 1	0.0000	0.0000	YES
End 2 Diam 2	0.0014	0.0007	YES
Perpendicularity To	<u>YES</u>		

y = 0.0000

1413 Topside Road, Louisville, TN 37777

Dupont WTP Diameter (in): 1.86 Date: Project: 4/3/2019 Project No.: 1281-18-062 Length (in): 4.26 Tested by: Boring Id: B-503 Unit Weight (pcf): 175.2 Reviewed by: BKP

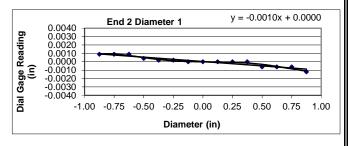

Sample No.: RC Moisture Content (%): 0.1

Depth (ft): 37.35 - 37.40

Deviation From Straightness (Procedure S1)

Is the maximum gap ≤ 0.02 in.? Straightness Tolerance Met?

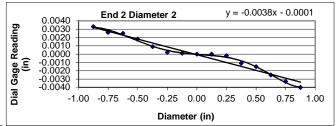
End Flatness and Parallelism Readings (Procedure FP1)				
Position	End 1	End 1(90)	End 2	End 2(90)
- 7/8	0.0000	0.0011	0.0009	0.0033
- 6/8	0.0000	0.0008	0.0009	0.0026
- 5/8	0.0000	0.0004	0.0009	0.0025
- 4/8	0.0000	0.0003	0.0004	0.0018
- 3/8	0.0000	0.0002	0.0002	0.0009
- 2/8	0.0000	0.0000	0.0002	0.0002
- 1/8	0.0000	0.0000	0.0000	0.0001
0	0.0000	0.0000	0.0000	0.0000
1/8	0.0000	0.0000	0.0000	0.0000
2/8	0.0000	0.0000	0.0000	-0.0002
3/8	0.0000	0.0000	0.0000	-0.0011
4/8	0.0000	-0.0004	-0.0006	-0.0015
5/8	0.0000	-0.0006	-0.0006	-0.0025
6/8	0.0000	-0.0010	-0.0006	-0.0033
7/8	0.0000	-0.0010	-0.0012	-0.0040


Diameter (in)

End 1 Diameter 1

0.0030 0.0020 0.0010

Flatness is met when the difference at any point between a smooth curve drawn through points and a visual best fit line is ≤ 0.001 in.


> Flatness Tolerance Met? YES

Parallelism is met when the angular difference between best fit lines on opposing ends is ≤ 0.25°.

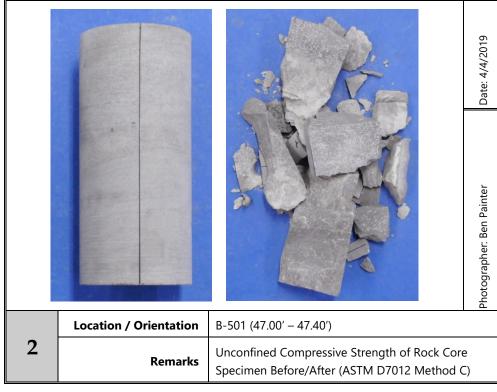
Parrallelisn	n Diameter 1
--------------	--------------

Slope of Best Fit Line:	0.00000
Angle of Best Fit Line:	0.00000
Slope of Best Fit Line:	-0.00103
Angle of Best Fit Line:	-0.05926
Max Angular Difference:	0.06
	Angle of Best Fit Line: Slope of Best Fit Line: Angle of Best Fit Line:

Parrallelism Diameter 2

Parallelism Tolerance Met?

Parranensin Diameter 2				
End 1:	Slope of Best Fit Line:	-0.00097		
	Angle of Best Fit Line:	-0.05550		
End 2:	Slope of Best Fit Line:	-0.00376		
	Angle of Best Fit Line:	-0.21543		
	Max Angular Difference:	0.16		


YES

Perpendicularity (Procedure P1) is met when the difference between max and min readings along each line divided by the diameter is ≤ 0.0043.

	Difference	Divide by	Meets
	b/w max & min	Diameter	Tolerance
End 1 Diam 1	0.0000	0.0000	YES
End 1 Diam 2	0.0021	0.0011	YES
End 2 Diam 1	0.0021	0.0011	YES
End 2 Diam 2	0.0073	0.0039	YES
Perpendicularity Tolerance Met?			<u>YES</u>

