

Report of Subsurface Exploration

Dallas Highway 36-Inch Parallel Water Main Mars Hill Road to Friendship Church Road CCMWA Project Number 9005-02-62-0000

Prepared for Engineering Strategies, Inc. January 15, 2016

Mr. Pedro Rosello, P.E., President Engineering Strategies, Inc. (ESI) 3855 Shallowford Road, Suite 525 Marietta, Georgia 30062 January 15, 2016

Report of Subsurface Exploration
Dallas Highway 36-Inch Parallel Water Main
Mars Hill Road to Friendship Church Road
Cobb County, Georgia
CCMWA Project Number 9005-02-62-0000
Geo-Hydro Project Number 150811.20

Dear Mr. Rosello:

Geo-Hydro Engineers, Inc. has completed the authorized subsurface exploration for the above referenced project. The scope of services for this project was outlined in our revised proposal number 18377.2 dated October 13, 2015. This report describes our understanding of the project and the subsurface conditions encountered and contains our conclusions and recommendations regarding the geotechnical aspects of the proposed design and construction.

PROJECT INFORMATION

Proposed Water Main Replacement

Our understanding of the project is based on our telephone conversations with you and our review of 75 percent review project drawings prepared by ESI. The project will consist of about 10,000 feet of new ductile iron pipe water main. The alignment will begin at an existing 30-inch diameter water main on the west side of Mars Hill Road just north of its intersection with Dallas Highway. The alignment generally heads east along the north shoulder of Dallas Highway to the intersection of Dallas Highway and Friendship Church Road, where the proposed water main alignment will tie into the West Side Loop (CCMWA Project No. 9005-90-61-0000) that is currently under construction. The alignment includes a 350-foot long lateral connecting the planned water main to the recently constructed CCMWA water tank at the Lost Mountain Water Storage Tank Site. Figure 1 in the Appendix shows the approximate proposed alignment. The new water line will be a 36-inch diameter pipe. The majority of the new water line will be located within the right-of-way for the existing roadways. The water line will generally have a minimum of 6 feet of soil cover and will be deeper in several areas due to existing topography, utilities, and other factors.

Existing Site Conditions

The project alignment includes primarily commercial areas, a police station, and some residential properties and neighborhoods. Topography along the alignment is typical for the Atlanta area with rolling upland areas separated by creeks and intermittent wet weather drainage features. No creek crossings will be required along the planned alignment. The right-of-way along Dallas Highway has numerous underground and overhead utilities.

EXPLORATORY PROCEDURES

Field Exploration

The subsurface exploration consisted of 25 machine-drilled borings performed at the approximate locations shown on Figures 2.1 through 2.8 included in the Appendix. The borings were located in the field by Geo-Hydro based on existing site features and survey stakes placed by others marking the new water line alignment. The elevations shown on the test boring records were interpolated from topographic site plans provided to us. In general, the locations and elevations of the borings should be considered approximate. Stationing is included on the test boring records and was estimated from the drawings.

Standard penetration testing, as provided for in ASTM D1586, was performed at select intervals in the borings. Soil samples obtained from the drilling operation were examined and classified in general accordance with ASTM D-2488 (Visual-Manual Procedure for Description of Soils). Soil classifications include the use of the Unified Soil Classification System described in ASTM D2487 (Classification of Soils for Engineering Purposes). The soil classifications also include our evaluation of the geologic origin of the soils. Evaluations of geologic origin are based on our experience and may be subject to some degree of interpretation.

Laboratory Testing

Samples for laboratory testing related to the corrosive properties of the soils were obtained from the auger cuttings at nine boring locations. Corrosion laboratory testing included pH (ASTM G51), reduction/oxidation (ASTM G200), and resistivity testing using the soil-box method (ASTM G187). Bulk samples of representative soils were obtained at six locations for standard Proctor compaction testing (ASTM D698). Moisture content tests (ASTM D2216) were performed on select split-spoon samples obtained during the drilling operations. Test results are included in the Appendix.

REGIONAL GEOLOGY

The project site is located in the Northern Piedmont Geologic Province of Georgia. Published geologic literature indicates that the site is underlain by an un-named unit consisting of intermixed amphibolite, hornblende gneiss, and felsic gneiss. Soils in this area have been formed by the in-place weathering of the underlying crystalline rock, which accounts for their classification as "residual" soils. Residual soils near the ground surface, which have experienced advanced weathering, frequently consist of red brown clayey silt (ML) or silty clay (CL). The thickness of this surficial clayey zone may range up to roughly 6 feet. For various reasons, such as erosion or local variation of mineralization, the upper clayey zone is not always present.

With increased depth, the soil becomes less weathered, coarser grained, and the structural character of the underlying parent rock becomes more evident. These residual soils are typically classified as sandy

micaceous silt (ML) or silty micaceous sand (SM). With a further increase in depth, the soils eventually become quite hard and take on an increasing resemblance to the underlying parent rock. When these materials have a standard penetration resistance of 100 blows per foot or greater, they are referred to as partially weathered rock. The transition from soil to partially weathered rock is usually a gradual one, and may occur at a wide range of depths. Lenses or layers of partially weathered rock are not unusual in the soil profile.

Partially weathered rock represents the zone of transition between the soil and the indurated metamorphic rocks from which the soils are derived. The subsurface profile is, in fact, a history of the weathering process which the crystalline rock has undergone. The degree of weathering is most advanced at the ground surface, where fine grained soil may be present. And, the weathering process is in its early stages immediately above the surface of relatively sound rock, where partially weathered rock may be found.

The thickness of the zone of partially weathered rock and the depth to the rock surface have both been found to vary considerably over relatively short distances. The depth to the rock surface may frequently range from the ground surface to 80 feet or more. The thickness of partially weathered rock, which overlies the rock surface, may vary from only a few inches to as much as 40 feet or more.

Stream valleys in the Piedmont Region may contain alluvial (water deposited) soils, depending on ground surface topography, stream flow characteristics, and other factors. By nature, alluvial soils can be highly variable depending upon the energy regime at the time of deposition. Coarse materials such as sand or gravel are deposited in higher energy environments, while fine grained materials such as silt and clay are deposited in low energy environments. Alluvial soils may also contain significant organic materials, and are frequently in a loose, saturated condition. In many cases, fine grained alluvial soils will be highly compressible and have relatively low shear strength.

Overall geologic conditions along sections of the water main alignment have been modified by previous grading activities for the roadways, utilities, residential lots, etc., and alluvial deposition.

TEST BORING SUMMARY

The majority of test borings were performed in landscaped and grassed areas on the north shoulder of Dallas Highway. Topsoil thicknesses encountered at the boring locations ranged from 2 to about 16 inches. Borings B-20 and B-23 were performed in turn lanes and encountered about 1 to 2 inches of asphalt underlain by 3 to 4 inches of graded aggregate base. The thickness of surface materials should be expected to vary along the alignment and detailed measurements necessary for quantity estimation were not performed for this exploration. For planning purposes, we recommend an arbitrary thickness of 12 inches for surface materials.

In general, the overburden soils (fill, alluvium, and residuum) consisted mostly of clayey silts, sandy silts, and silty sands typical of the Piedmont region. Fill materials were encountered in 17 of the 25 borings.

The fill materials extended to depths ranging from about 3 to 12 feet. Standard penetration resistances recorded in the fill ranged from 3 to 22 blows per foot.

Beneath the fill material, alluvial sands were encountered in boring B-22 extending to a depth of about 18 feet. A standard penetration resistance of 8 blows per foot was recorded in the alluvium.

Beneath fill materials or alluvial soils, all of the borings encountered residual soil typical of the Piedmont Region. The residual soils were generally classified as clayey silt, sandy silt, and silty sand. Standard penetration resistances recorded in the residuum ranged from 2 to 51 blows per foot.

Borings B-10 and B-22 encountered partially weathered rock beginning at depths ranging from about 6 and 28 feet, respectively, which corresponds to approximate elevations 1150 and 1084, respectively. Partially weathered rock is locally defined as residual material having a standard penetration resistance of 100 blows per foot or greater.

Conditions causing auger refusal were encountered in boring B-10 at a depth of 17 feet, which corresponds to an elevation of approximately 1139. Auger refusal is the condition that prevents further advancement of the boring using conventional soil drilling techniques. The remaining borings were extended to their planned termination depths without encountering auger refusal.

Groundwater was encountered in nine of the soil test borings. The depth to groundwater varied from about 7 to 17 feet below the ground surface. For safety reasons, several borings were backfilled immediately after drilling. Where feasible, groundwater was checked in the borings at least 24 hours after drilling. It is important to note that groundwater levels will fluctuate depending on seasonal variations of precipitation and other factors, and may occur at higher elevations in the future.

Boring Number	Approximate Station	Depth to Groundwater (feet)	Approximate Groundwater Elevation (feet)
B-6	17+50	7	1147
B-7	22+50	10	1153
B-8	27+50	16	1155
B-9	32+50	14	1155
B10	37+50	9	1147
B-21	80+25	14	1114
B-22	84+70	15	1097
B-23	85+80	16	1095
B-24	90+00	17	1087

For more detailed descriptions of subsurface conditions, please refer to the test boring records and summary table included in the Appendix.

LABORATORY TESTING

Laboratory testing was performed on 6 bulk soil samples and 50 split spoon samples obtained during field operations to assist in evaluating the soils for reuse as structural fill. Standard Proctor compaction tests (ASTM D698) and moisture content tests (ASTM D2216) were performed on the bulk samples and moisture content testing was performed on the split spoon samples. Standard Proctor test data sheets and a table of moisture content test results are included in the Appendix. The following table summarizes the results of the Proctor tests.

Boring	Station	Maximum Dry Density (pcf)	Optimum Moisture Content (%)	Natural Moisture Content (%)
B-1	1+50	102.5	22.0	22.8
B-7	22+50	101.0	21.5	30.3
B-11	41+50	101.0	21.0	20.9
B-17	61+75	109.0	17.0	20.9
B-21	80+25	107.5	15.5	23.1
B-25	94+00	105.5	20.0	30.0

CORROSION TESTING

Laboratory testing for corrosion characteristics was performed on bulk samples obtained from 9 boring locations. Measured pH readings ranged from 4.6 to 6.5. Oxidation/reduction potential ranged from 321 to 382 mV. Resistivity readings ranged from 4,550 to 36,000 ohms-cm. The table below summarizes the corrosion laboratory test results. Complete test results are included in the Appendix.

Boring	Station	Sample Depth (feet)	рН	ORP (mV)	Resistivity (ohms-cm)
B-1	1+50	17	4.6	351	36,000
B-5	12+50	10	6.6	321	4,550
B-7	22+50	. 13	5.4	348	22,000
B-9	32+50	15	4.9	382	16,800
B-13	51+50	10	4.7	37	24,600
B-17	61+75	10	5.3	361	28,200
B-19	71+50	10	5.0	345	14,800
B-21	80+25	12	6.0	381	9,010
B-24	90+00	15	5.0	322	23,000

EVALUATIONS AND RECOMMENDATIONS

The following evaluations are based on the information available on the proposed water main alignment, the data obtained from the exploratory borings and laboratory testing, and our experience with soils and subsurface conditions similar to those encountered at the explored locations. Because the subsurface exploration represents a statistically small sampling of subsurface conditions, it is possible that conditions between the test borings may be substantially different from those indicated by the borings.

Excavation Characteristics

Boring B-10 encountered partially weathered rock at a depth of about 6 feet, which corresponds to approximate elevation 1150; approximately 8 feet above the planned invert elevation. Boring B-10 also encountered conditions causing auger refusal at a depth of 17 feet, which corresponds to an elevation of approximately 1139; approximately 3 feet below the planned invert elevation. Based on the soil test boring data, difficult excavation conditions should be expected in this area (STA 37+50). Partially weathered rock may also be encountered along unexplored portions of the alignment. Partially weathered rock can typically be removed with adequate equipment. However, larger boulders, rock lenses, and dense seams within partially weathered rock can hinder excavation. A budget contingency should be included for rock excavation.

Partially weathered rock was also encountered in boring B-22 at a depth of 18 feet; approximately 11 feet below the planned invert elevation. Based on the proposed water line profiles provided to us, we do not expect difficult excavation conditions in this area because we do not expect construction activities to extend to the depth where denser materials were encountered.

It is important to note that the geology of the Piedmont is characterized by variable subsurface conditions. Due to the widely-spaced nature of the borings, it is likely that subsurface conditions intermediate of the borings will be different. Weathered rock, mass rock, boulders, and rock seams may all be encountered at locations intermediate of the borings along the alignment.

For construction bidding and field verification purposes it is common to provide a verifiable definition of rock in the project specifications. The following is a typical definition of trench rock:

• Trench Rock: Material occupying an original volume of at least one-half cubic yard which cannot be excavated with a hydraulic excavator having a minimum flywheel power rating of 123 kW (165 hp); such as a Caterpillar 322C L, John Deere 230C LC, or a Komatsu PC220LC-7; equipped with a short tip radius bucket not wider than 42 inches.

Crossings

Based on the results of the test borings, we do not anticipate that the planned jack-and-bore crossings will be significantly hindered by partially weathered rock or rock as long as excavation for installation of the water main does not extend deeper than the depths explored.

Groundwater will be a concern for the jack-and-bore crossing at County Road (Approximate station 85+00). We provide additional discussion regarding temporary groundwater control in the *Construction Dewatering* section below. In addition to the pipe trench, driving and receiving pits for jack-and-bore crossings will have to be adequately shored and dewatered to allow construction.

Earth Slopes

Temporary construction slopes should be designed in strict compliance with OSHA regulations. The exploratory borings indicate that most soils along the alignment are Type B or C as defined in 29 CFR 1926.650 (1994 Edition). In general, we recommend that temporary construction slopes be no steeper than 1.5H:1V for excavation depths of 20 feet or less. However, temporary excavation slopes in firm residual soils above the groundwater level can have a gradient of 1H:1V. Temporary construction slopes should be closely observed on a daily basis by the contractor's "competent person" for signs of mass movement: tension cracks near the crest, bulging at the toe of the slope, etc. The responsibility for excavation safety and stability of temporary slopes should lie solely with the contractor.

We recommend that extreme caution be observed in trench excavations. Several cases of loss of life due to trench collapses in Georgia point out the lack of attention given to excavation safety on some projects. We recommend that applicable local and federal regulations regarding temporary slopes, and shoring and bracing of trench excavations be closely followed.

Temporary Excavation Bracing

If at a given location a sloped excavation is not feasible, trench boxes or other temporary excavation bracing will be required. The most appropriate type of excavation bracing will be dictated by subsurface conditions at the specific excavation or pit location. Typically, the contractor will design and implement temporary excavation bracing as part of means and methods.

Construction Dewatering

Based on the groundwater levels in the borings, groundwater will be encountered in several sections of the water main alignment. The main areas that will be affected are between stations 15+00 and 40+00 and between stations 78+00 and 92+00. However, groundwater may be encountered in other low-lying areas along the alignment. Dewatering should be performed to maintain the groundwater level approximately 2 to 3 feet below the lowest prevailing excavation depth. In most cases we expect that direct pumping from the excavation will provide satisfactory temporary construction dewatering. However, the actual

dewatering approach will be dictated by conditions at the time of excavation. Sand layers or other more permeable soil layers may significantly increase the amount of water inflow into open excavations.

The amount of temporary dewatering actually required during construction is related not only to the prevailing weather conditions, but also the contractor's sequencing of construction activities. Construction specifications should include performance guidelines for temporary dewatering. Performance guidelines allow the contractor to select the actual means and methods of construction dewatering. The following sample specification¹ could be used as a guide for development of actual specifications.

Control of groundwater shall be accomplished in a manner that will preserve the strength of the foundation soils, will not cause instability of the excavation slopes, and will not result in damage to existing structures. Where necessary to these purposes, the water level shall be lowered in advance of excavation, utilizing trenches, sumps, wells, well points, or similar methods. The water level, as measured in piezometers, shall be maintained a minimum of 3 feet below the prevailing excavation level. Open pumping from sumps and ditches, if it results in boils, loss of soil fines, softening of the ground, or instability of slopes, will not be permitted. Wells and well points shall be installed with suitable screens and filters so that continuous pumping of soil fines does not occur. The discharge shall be arranged to facilitate collection of samples by the Engineer.

We recommend that pipe bedding be used where groundwater is encountered. This will provide a level, stable base for pipe installation. We recommend #57 or #78 crushed stone meeting Georgia DOT specifications as pipe bedding. The bedding stone should be wrapped in non-woven, needle-punched geotextile fabric meeting the requirements of AASHTO M288 for Class 2 Geotextiles.

Structural Fill Placement

Materials selected for use as structural fill should be free of organic matter, waste construction debris, and other deleterious materials. In general, the material should not contain rocks having diameters over 4 inches. It is our opinion that the following soils represented by their USCS group symbols will typically be suitable for use as structural fill and are commonly found in abundance in the Piedmont region: (CL), (SM), and (ML). The following soil types are typically suitable but are not abundant in the Piedmont region: (SW), (SP), (SC), (SP-SM), and (SP-SC). The following soil types are considered unsuitable: (MH), (CH), (OL), (OH), and (Pt).

Laboratory Proctor compaction tests should be performed on representative samples of proposed fill materials to provide data necessary to determine acceptability and for quality control. The moisture content of suitable borrow soils should generally be no more than 3 percentage points above or below their optimum moisture contents at the time of compaction. Tighter moisture limits may be necessary with certain soils.

¹ The sample specification was adapted from <u>Construction Dewatering - A Guide to Theory and Practice</u>, John Wiley and Sons, and is not intended for direct use as a construction specification without modifications to reflect specific project conditions.

Suitable fill material should be placed in thin lifts. Lift thickness depends on type of compaction equipment; but in general lifts of 8 inches loose measurement are recommended. The soil should be compacted by heavy compaction equipment such as a self-propelled sheepsfoot roller. Within confined areas, such as around the pipe or manhole structures, we recommend the use of "wacker packers" or "Rammax" compactors to achieve the specified compaction. Loose lift thicknesses of 4 to 6 inches are recommended in small area fills.

In general, we recommend that structural fill be compacted to at least 95 percent of the standard Proctor maximum dry density (ASTM D698). Following Georgia DOT guidelines, the upper 12 inches of pavement subgrade soils should be compacted to at least 100 percent of the standard Proctor maximum dry density. Geo-Hydro should perform density tests during fill placement.

Soils excavated from elevations approaching and extending below the groundwater level will have moisture contents that will be too high to allow proper compaction. As most of the water main alignment will be outside the travel lanes, the compaction criteria can possibly be adjusted to allow the reuse of soils with higher moisture contents than those typically required for structural fill. However, proper compaction must be achieved beneath any roadways and other areas where pavements or other hardscapes will be supported by the fill.

Air-drying can be performed in the warmer, drier periods of the year but drying soil is typically only practical on larger grading sites. We expect that the most practical option will be to use a chemical agent, such as lime, to dry the soils but areas to spread soils are still needed. One or more staging areas near the project alignment could be used to dry wet soils. The contractor should be prepared to dry soils on this project. We can provide further guidance concerning the use of lime once a contractor is selected and a plan for addressing wet backfill soils is developed. Budget planning should consider the need to dry or replace wet soils (haul off wet soil and import drier soil).

Pipe Support

Based on the results of the test borings and our observations, it is likely that conditions varying from loose fill to partially weathered rock or rock will be exposed at invert elevation for the water main. In order to limit potential differential settlement and stress concentrations at the interface of dissimilar bearing materials, soft soils should be removed and pipe bedding consisting of crushed stone should be placed as necessary. Bedding will likely be needed in conjunction with dewatering as discussed above. This approach will also provide a stable and relatively level working surface during installation of pipe sections.

We recommend that project plans require at least 6 inches of #57 or #78 crushed stone meeting Georgia DOT specifications for gradation as bedding for the pipe. This approach should result in satisfactory removal of the upper portion of loose soils, where present, and would establish a relatively uniform bearing surface. In areas where groundwater is present or expected to fluctuate within the pipe interval, pipe bedding stone should be wrapped using non-woven, needle-punched geotextile fabric meeting the requirements of AASHTO M288 for Class 2 Geotextiles.

Subsurface conditions will vary, and we recommend that a qualified geotechnical engineer be present during preparation of bearing surfaces for the pipeline.

Thrust Block Design

At the time of this report, locations along the alignment that will require a thrust block had not been provided to us. Once final locations are determined for any thrust blocks along the alignment, please allow us to revise our recommendations. The following paragraphs outline general thrust block recommendations that can be used for planning purposes. Depending on the actual thrust block locations, more favorable parameters and recommendations may be possible.

Passive earth pressure may be evaluated using the following equation:

$$p_h = K_p (D_w Z + q_s) + W_w (Z-d)$$

where: p_h = horizontal earth pressure at any depth below the ground surface (Z)

 $W_w = unit weight of water$

Z = depth to any point below the ground surface

d = depth to groundwater surface

 D_w = partially saturated unit weight of the soil backfill (depending on borrow sources). The partially saturated unit weight of most residual soils may be expected to range from approximately 115 to 125 pcf. Below the groundwater level, D_w must be the buoyant weight.

q_s = uniform, permanent surcharge load

K = earth pressure coefficient as follows:

Earth Pressure Condition	Coefficient
Active (Ka)	0.33
Passive (K _n)	3.0

For analysis of sliding resistance at the base of the block, the coefficient of friction may be taken as 0.4 for residual soils in contact with the bottom of the block. This is an ultimate value and an adequate safety factor should be used in design. Full development of the frictional force could require deflection of roughly 0.1 to 0.3 inches.

The base of the thrust block should bear on relatively firm soils. Provided that a stable bearing surface is available, an allowable bearing pressure of 2,000 psf can be used in design of support for the block. The thrust block subgrade must be evaluated by Geo-Hydro to verify that the recommended bearing pressure is available. Also, the block location must be properly dewatered to reduce disturbance to the block subgrade. If the subgrade soils become water-softened, undercutting may be required to remove soft soils. If friction at the base of the block is used to resist sliding, lean concrete must be used to backfill any undercut areas.

AMP/LEB/150811.20 - Dallas Highway 36-Inch Parallel Water Main - Geotechnical Report

Geo-Hydro Engineers, Inc. has appreciated the opportunity to work with you on this phase of the project, and we look forward to providing any additional services you may require. If you have any questions concerning this report or any of our services, please call us.

Sincerely,

GEO-HYDRO ENGINEERS, INC

A. Marty Peninger, P.E.

Senior Geotechnical Engineer

Luis E. Babler, P.E.

Chief Engineer

APPENDIX

Geo-Hydro Project Number 150811.20

0

GEO HYDRO ENGINEERS

Table 1: Summary of Soil Test Borings
Dallas Highway 36-Inch Parallel Water Main
Mars Hill Road to Friendship Church Road
Cobb County, Georgia
Project Number 150811.20

Boring		Approx.	Approx.	Groundw	dwater	Botton	Bottom of Fill	Bottom of	Bottom of Alluvium	Top	Top of PWR	Auger	Auger Refusal	Boring Te	Boring Termination
	Approx. Station	Ground	Invert	Depth	Approx.	Depth (feet)	Approx.	Depth	Approx.	Depth	Approx.	Depth	Approx.	Depth	Approx.
B-1	1+50	1201	1181	9 0	Licyation	8	1103	(lear)	Elevation	(lear)	Elevation	(reet)	Elevation	(teet)	Elevation
B.2	3772	1203	1470	5			193	 		n.e.		n.e.		35	1166
7-0	07+0	5071	8/11	n.e.	,	20	1200	n.e.	•	n.e.	1	n.e.		35	1168
20 1	6+75	1195	1177	n.e.		3	1192	n.e.		n.e.	1	n.e.		35	1160
B-4	7+75	1194	1175	n.e.	1	က	1191	n.e.		n.e.	1	n.e.		30	1164
B-5	12+50	1168	1157	n.e.	,	12	1156	n.e.		n.e.	1	n.e.	1	15	1153
9-e	17+50	1154	1140	7	1147	9	1148	n.e.	-	n.e.	,	n.e.		20	1134
B-7	22+50	1163	1146	10	1153	3	1160	n.e.	,	n.e.		n.e.		30	1133
B-8	27+50	1171	1153	16	1155	12	1159	n.e.		n.e.	,	n.e.	,	25	1146
B-9	32+50	1169	1152	14	1155	n.e.	-	n.e.	-	n.e.	1	n.e.	,	25	1144
B-10	37+50	1156	1142	6	1147	n.e.	1	n.e.	1	9	1150	17	1139	17	1139
B-11	42+50	1139	1123	n.e.	1	8	1131	n.e.	1	n.e.		n.e.		20	1119
B-12	47+00	1133	1123	n.e.	-	n.e.	-	n.e.	1	n.e.	,	n.e.		15	1118
B-13	51+50	1141	1129	n.e.	ì	9	1135	n.e.	1	n.e.		n.e.		25	1116
B-14	52+50	1143	1132	n.e.	-	3	1140	n.e.	1	n.e.		n.e.		25	1118
B-15	54+60	1147	1137	n.e.	,	3	1144	n.e.		n.e.		n.e.		25	1122
B-16	56+40	1155	1143	n.e.	-	3	1152	n.e.		n.e.	1	n.e.		25	1130
B-17	61+75	1168	1156	n.e.		n.e.	1	n.e.	,	n.e.	1	n.e.		15	1153
B-18	09+20	1168	1158	n.e.		n.e.	1	n.e.		n.e.	1	n.e.		15	1153
B-19	71+50	1162	1149	n.e.	,	3	1159	n.e.	1	n.e.		n.e.	1	15	1147
B-20	75+75	1147	1137	n.e.	,	n.e.		n.e.	1	n.e.		n.e.		15	1132
B-21	80+25	1128	1114	14	1114	8	1120	n.e.	1	n.e.		n.e.		25	1103
B-22	84+70	1112	1095	15	1097	12	1100	18	1094	28	1084	n.e.	1	30	1082
B-23	85+80	1111	1094	91	1095	8	1103	n.e.	1	n.e.	1	n.e.		30	1081
B-24	00+06	1104	1087	17	1087	n.e.		n.e.		n.e.	1	n.e.		20	1084
B-25	94+00	1093	1075	n.e.		9	1087	n.e.	1	n.e.		n.e.	,	20	1073

n.e.: Not Encountered PWR: Partially Weathered Rock

Symbols and Nomenclature

Symbols

	Thin-walled tube (TWT) sample recovered
П	Thin-walled tube (TWT) sample not recovered
•	Standard penetration resistance (ASTM D1586)
50/2"	Number of blows (50) to drive the split-spoon a number of inches (2)
65%	Percentage of rock core recovered
RQD	Rock quality designation - % of recovered core sample which is 4 or more inches long
GW	Groundwater
	Water level at least 24 hours after drilling
▼ 	Water level one hour or less after drilling
ALLUV	Alluvium
TOP	Topsoil
PM	Pavement Materials
CONC	Concrete
FILL	Fill Material
RES	Residual Soil
PWR	Partially Weathered Rock
SPT	Standard Penetration Testing

Penetration	Resistance Results	Approximate
	Number of Blows, N	Relative Density
Sands	0-4	very loose
	5-10	loose
	11-20	firm
	21-30	very firm
	31-50	dense
	Over 50	very dense
		Approximate
	Number of Blows, N	Consistency
Silts and	0-1	very soft
Clays	2-4	soft
	5-8	firm
	9-15	stiff
	16-30	very stiff
	31-50	hard
	Over 50	very hard

Drilling Procedures

Soil sampling and standard penetration testing performed in accordance with ASTM D 1586. The standard penetration resistance is the number of blows of a 140-pound hammer falling 30 inches to drive a 2-inch O.D., 1.4-inch I.D. split-spoon sampler one foot. Rock coring is performed in accordance with ASTM D 2113. Thin-walled tube sampling is performed in accordance with ASTM D 1587.

Location: Mars Hill Road to Friendship Church Road, Cobb County, Georgia Date: 12/8/15				36-Inch Paralle					No: 15		20	
Driller: B&C (Autohammer) GWT at 24 hrs: Not Encountered Logged By: JTR	Location: M	lars Hi	II Road	d to Friendship	Church Road, Cob	b County, Ge	orgia	Date:	12			
Description N Standard Penetration Test (Blows/Foot) Topsoil (Approximately 5 inches) Firm to soft brown silty clay (CL) with organics (FILL) Loose brown silty fine to medium sand (SM) (FILL) Firm red-orange clayey silt (ML) (RESIDUUM) Firm to loose brown silty fine to medium sand (SM) Firm to loose brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM)	Method: HS	A- AS	TM D1	586	GWT at Drilling:	Not Encoun	tered	G.S. El	ev:	120	1	
Description N (Blows/Foot) Topsoil (Approximately 5 inches) Firm to soft brown silty clay (CL) with organics (FILL) Loose brown silty fine to medium sand (SM) (FILL) Loose brown silty fine to medium sand (SM) (FILL) Firm red-orange clayey silt (ML) (RESIDUUM) Firm to loose brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM) 11 Firm to very firm brown silty fine to medium sand (SM)	Driller: B&C	(Auto	hamm	er)	GWT at 24 hrs:	Not Encount	ered					
Topsoil (Approximately 5 inches) Firm to soft brown silty clay (CL) with organics (FILL) Loose brown silty fine to medium sand (SM) (FILL) Firm red-orange clayey silt (ML) (RESIDUUM) Firm to loose brown silty fine to medium sand (SM) Firm to loose brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM)	Elev. (Ft) Depth (Ft)	GWT	Symbol		Description		N	Stand	(Blows/	Foot)		1 80 9
Firm to soft brown silty clay (CL) with organics (FILL) Loose brown silty fine to medium sand (SM) (FILL) Firm red-orange clayey silt (ML) (RESIDUUM) Firm to loose brown silty fine to medium sand (SM) Firm to loose brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM)	- 1200		17, 17					10	20 3	1 1		1
Loose brown silty fine to medium sand (SM) (FILL) Firm red-orange clayey silt (ML) (RESIDUUM) Firm to loose brown silty fine to medium sand (SM) 15— 1185				Firm to soft bro organics (FILL	own silty clay (CL))	with	8	•				
Loose brown slity fine to medium sand (SM) 6 Firm red-orange clayey silt (ML) (RESIDUUM) 6				, , , , , , , , , , , , , , , , , , ,	The Committee of the committee of		4	•				
Firm to loose brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM) Firm to very firm brown silty fine to medium sand (SM)				(FILL)	100	sand (SM)	6	•			-	
Sand (SM)							6	•				
-1185	-			Firm to loose b sand (SM)	rown silty fine to m	nedium						
Firm to very firm brown silty fine to medium sand (SM)		_					11					
sand (SM)							9 -					
30—		-			m brown silty fine t	o medium	14					
							26					
Stiff brown and tan fine sandy silt (ML) Boring Terminated at 35 feet						(ML)	14					
40	40—											
Remarks: Approximate Station 1+50		roximate	e Station	1+50								

Projec	ct: Dalla	as Hig	ghway	36-Inch Paralle	el Water Main			Project No:	150811.20
					Church Road, Col	b County, Geo	orgia	Date:	12/8/15
	od: HSA	4.1			GWT at Drilling:			G.S. Elev:	1203
	: B&C				GWT at 24 hrs:	Not Encount	ered	Logged By:	JTR
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N		Penetration Test ows/Foot)
- 1200 - 1200 - 1195 - 1190 - 1190 - 1185	5			Loose brown of fragments (FII Firm red fine self-toose brown self-toose br	oximately 6 inches clayey fine sand (SLL) sandy silt (ML) (REsilty fine to coarse ge-brown fine sand	SC) with rock SIDUUM) sand (SM)	7 5 10 22 7	10 20	30 40 50 60 70 80 90
- 1180	25—				prown fine sandy si		26 —		
- 1175	30-				ed fine sandy silt (I		6		
- 1165	35				ated at 35 feet	sand (SM)	38		
Remark	40 —	oximat	e Statio	n 3+25					

Project	ot: Dall	ac Hid		/ 36-Inch Parallel	I Water Main			Project	No: 15	0811.20)	
-					Church Road, Cob	b County. Ged	orgia	Date:		9/15		
	od: HS				GWT at Drilling:			G.S. EI		1195		
	: B&C				GWT at 24 hrs:			Logged		JTR		
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N		dard Penet (Blows/F	oot)		
			*****	Topsoil (Appro	oximately 4 inches)		0	10	20 30	40 50	60 70 8	80 90 100
	_				layey silt (ML) (FIL		10					
-	-			Hard to very st	tiff light brown to da	ark brown	10	Ĭ				
- - 1190	5—			fine sandy silt	(ML) (RESIDUUM)		39			•		
-	_											
	_			Stiff brown clay	vov silt (ML)		26					
- 4405	-			Still brown ciay	yey siit (IVIL)		10					
— 1185 —	10 —	9					10					
-	-			Firm tan fine sa	andy silt (ML)							
1180	15—						7					
F												
— 1175	20 —						10	•			++-	
	_											
-	-											
- 1170	25-						10					
- "	-											
					:14	CNA						
_	-			Dense red-brov	wn silty fine sand (SIVI)	41					
— 1165 —	30 —						41					
-	-											
— 1160	35			Boring Termina	ated at 35 feet		34					
-												
— 1155	40			,								Ш
— 1165 - - - - 1160 - - - - - - - - - - - - -	s: Appr	oximate	e Statio	on 6+75								

Locati	on: Ma	rs Hi	II Roa	d to Friendshi	p Church Road, C	obb County, Ge	orgia	Date:		12/9/1	5		_
Metho	d: HSA	- AS	TM D1	586	GWT at Drillin	g: Not Encoun	tered	G.S. I	Elev:	1	194		
Driller	: B&C	Auto	hamn	ner)	GWT at 24 hrs	: Not Encount	ered	Logge	ed By:	JTF	3		
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N		ndard Pe (Blow	/s/Foot)			0 \$
					proximately 3 inche								
				Loose brown	n clayey fine sand	(SC) (FILL)	9						
	-			Stiff to firm r	ed clayey silt (ML)	(RESIDUUM)		. 7. 4					
- 1190	5—						9						
	_												
	-						14						
- 1185													
1100	10-						6	•					-
	-			4									
				Firm brown	silty fine to medium	sand (SM)							
- 1180	_												
	15—						20						
	-			Very dense b	orown silty fine to o	coarse sand	-						
1175	Very dens (SM) with				ck fragments		51						
	-												
- 1170				Firm brown s	silty fine to medium	sand (SM)							
1170	25—						19		-	+	+	-	-
1165													
-	30	2.1	ested tel	Boring Term	inated at 30 feet		14						
	-												
- 1160	35—												
	-												
	-												
1155													
	40												
Remark	s: Appro	oximat	e Statio	n 7+75									

Proje	ct: Dalla	as Hig	ghway	36-Inch Parallel	Water Main			Projec	et No: 1	50811	1.20		
Locat	ion: Ma	rs Hil	II Roa	d to Friendship (Church Road, Cob	b County, Ged	orgia	Date:	1	2/9/15	5		
Metho	od: HS /	A- AS	TM D1	586	GWT at Drilling:	Not Encount	tered	G.S. E	Elev:	11	56		
Drille	r: B&C	(Auto	hamn	ner)	GWT at 24 hrs:	9 feet		Logge		JTR			
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N		ndard Per (Blows	s/Foot)			0 90 10
	5	<u> </u>		Partially weath black fine sand Hard red-brown	n fine sandy silt (M ered rock sampled sandy silt (ML)	as red and	28 47 50/6" 38	1	0 20	30 40	50 6) 70 8	0 90 100
_ _ 1120 _ _ _	35 —												
Remark	ss: Appro	oximate	e Statio	n 37+50									

Location: Mars Hill Road to Friendship Church Road, Cobb County, Georgia							Date: 12/10/15						
Method: HSA- ASTM D1586 Driller: B&C (Autohammer)					GWT at Drilling: Not Encountered			G.S. El	G.S. Elev: 1139				
					GWT at 24 hrs:		Logged	Logged By: JTR					
Elev. (Ft)	Depth (Ft)	GWT	Symbol	,	Description N			Standard Penetration Test (Blows/Foot)					
				\Topsoil (Appro	oximately 4 inches) /		0	10 20 30 40 50 60 70 80 90					
- 1135	_ _ _				ed and brown clay		6	•					
,,,,,	5—						15		•				
4400	_			Loose red and	brown clayey fine	sand (SC)	12						
-1130	10 —			(RESIDUUM)			8	-					
- 1125				Firm brown silt	y clay (CL)								
1120	15—						6	•					
- 1120		s.		Firm tan silty c			8						
	20 —			Boring Termina	ated at 20 feet		0						
- 1115	_ _ 25—												
	-												
1110	30 —												
1105	35—												
1100	40												
Remarks	s: Appro	oximate	e Statio	n 42+50									

Proje	ct: Dalla	as Hig	ghway	36-Inch Parallel	Water Main	1 1		Project N				
Locat	ion: Ma	rs Hil	II Road	d to Friendship (Church Road, Cob	b County, Geo	orgia	Date:	12/1	0/15		
Metho	od: HSA	- AS	TM D1	586	GWT at Drilling:	Not Encount	tered	G.S. Elev	:	1141		
Drille	r: B&C (Auto	hamm	ner)	GWT at 24 hrs:	Not Encounte	ered	Logged E	2	ΓR		
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N	Standar (d Penetra Blows/Fo	ation Tesot)		0 00 100
				\Topsoil (Appro	ximately 3 inches)			0 10	20 30	40 50 6	70 8	90 100
— 1140 –					y clay (CL) (FILL)		7					
-	_			Firm tan-brown	silty fine sand (SI	M) (FILL)	'					
	5—					, , ,	13	•				
— 1135	-			Stiff to firm tan	-brown to red fine	sandv silt		1				
				(ML) (RESIDU	UM)	ournay one	11	•				
	_											
-	10 —						6	•				1
— 1130 —												
-	-											
	15—						8	•				+
— 1125	-											
-												
	_											
-	20 —						7					
— 1120 —												
-	-											
	25			B : T	-t1 -t 05 ft		7	•		++		+
1115	-			Boring Termina	ated at 25 feet							
	-											
5 4440	30 —											
1110	_											
	-											
	35—											
1105	-											
	-											
Remark	40— s: Appr	oximat	e Statio	n 51+50				1	-			
- 1110 - 1110 - 1105 -	o. Appri	CAITIGE										
<u> </u>								January 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				

Projec	ct: Dalla	as Hid	ahwa	y 36-Inch Paralle	Water Main	er.		Pro	oject No:	150	811.2	0		
-			-		Church Road, Cob	b County, Geo	orgia	Da	te:	12/1	1/15			
	od: HS /				GWT at Drilling:			G.	S. Elev:		1143	3	2=	
Driller	: B&C	(Auto	hamn	ner)	GWT at 24 hrs:	N/A (Boring I	Backfille	d) Lo	gged By	: J	TR			
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description			ows/Fo	ot)					
				\Topsoil (Appro	ximately 3 inches)		0		10 2	0 30	40 50	60 70	80 90	3 100
-	_			Loose brown c	layey fine sand (S	C) (FILL)	6							
— 1140 —				Stiff red silty cl	ay (CL) (RESIDUL	JM)		Ì						
-	5 —						12		•		+		+	-
				Firm brown fine	e sandy silt (ML)		7							
— 1135	_			Firm brown silt	y fine to medium s	and (SM)	7							
	10						13		•		-		+	+
— 1130	-			Firm to stiff red	-brown fine sandy	silt (ML)								
	15—						5 —							_
-	-													
_ 1125														
-	-						13							
	20 —					(A)	13							
_ 1120														
- 1120	-			Firm black and	tan silty fine sand	(SM)								
_	25 —		· 11. F ·	Boring Termina	ited at 25 feet		13							
<u>-</u>	-													
— 1115 –														
	30 —													
	-													
— 1110 —														
_	35—													
_														
— 1105	-													
	40												\perp	\dashv
Remarks	s: Appro	oximate	e Statio	on 52+50										

					I NAZ- 4 B.F 5			Project N	1508	211 20		
				36-Inch Parallel		h County Co	araio	Date:	12/1			
					Church Road, Cob			G.S. Elev		1155		
	od: HSA				GWT at OA bree			Logged E		rr rr		
	r: B&C (147		er)	GWT at 24 hrs:	NOT Encount	Standard Penetration Test					
Elev. (Ft)	Depth (Ft)	GWT	Symbol		Description		N o	10	20 30	40 50 6	0 70 80	90 100
_	_		******		ximately 5 inches)							
	_			(FILL)	y clay (CL) with roc		9	•				
	_			Stiff red silty cl	ay (CL) (RESIDUL	JM)						
— 1150	5—				1		9					
F				Very stiff red-o	range fine sandy s	ilt (ML)	12					
-	-			Loose red and	tan to black silty fi	ne sand						
- 1145	10 —			(SM)	-		8 —	•	-		+	+ $+$ $+$
-	-											
_	-											
1140	15—						6					$\top \Box$
-	-											
- 1135	20 —						7					$\perp \perp \mid$
- 1133	-											
-	-											
1130	25			Boring Termina	ated at 25 feet		8	•			\forall	+
	-											
	30											
1125	30 —											
-	-											
Lane I												
1120	35 —											
_	-											
— 1115 Remark	40 — s: Appr	oximat	e Statio	n 56+40								
— 1115 Remark												

Projec	ct: Dalla	as Hi	ghway	36-Inch Parallel Water Main		Projec	t No: 15	0811.20)	-
Locati	ion: Ma	rs Hi	II Road	to Friendship Church Road, Cobb County, Ge	orgia	Date:	12	/8/15		
Metho	d: HSA	A- AS	TM D1	586 GWT at Drilling: 16 feet		G.S. E	Elev:	1128		
Driller	: B&C	(Auto	hamm	GWT at 24 hrs: 14 feet		Logge	d By:	JTR		
(Ft)	Depth (Ft)	GWT	Symbol	Description	N		ndard Pene (Blows/F	oot)	est 60 70 80	90
				Topsoil (Approximately 2 inches)	0		20 30	40 30	1 1	
1125				Firm brown clayey silt (ML) with organics and rock fragments (FILL)	5	•				
	5-				7	•				1
				Very stiff brown clayey silt (ML) with organics and rock fragments (FILL)	16		•			
1120	10—			Loose to very loose orange-brown to white and brown micaceous silty fine sand (SM) (RESIDUUM)	6	•				-
1115		1								
	15—	Ā Ā			4	•				
1110				Very loose to loose brown and white highly micaceous silty fine sand (SM)						
	20 —			micacocae city into carra (city)	2					
1105	25			Boring Terminated at 25 feet	6	•				
1100				boning reminated at 23 leet						
1100	30—									
	-									
1095										
	35—									
090										
	40 — s: Appr									1

	et: Dalla			to Friendship Church R		eorgia	Date:	12	2/7/15		
	d: HSA				at Drilling: Not Encou		G.S. Ele		110	4	
					at 24 hrs: 17 feet		Logged	100	JTR		
Driller (Ft)	Depth (Ft)	Auto	Symbol	Descri		N	Standard Penetration Test (Blows/Foot)				
200			0)	Topsoil (Approximately	2 inches)	0	10	20 3	0 40 50	60 70	80 90
	-			Very loose to loose pink micaceous silty fine sar	k and white	4	•				
1100	5—					7	•				
1095	-			Very loose white micace	eous silty fine sand	5	•				
	10 —			(SM)	and (CM)	2	•				
1090	15—			Firm brown silty fine sar	na (SM)	13					
	=	<u>_</u>									
1085	20					12					1
	-			Boring Terminated at 20	U teet						
1080	- -										
	25— — —										
1075	30—										
	-										
1070	35—										
005											
1065	40										

LABORATORY TEST RESULTS

Table 2: Moisture Content Test Results
Split Spoon Soil Samples
Dallas Highway 36-Inch Parallel Water Main
Mars Hill Road to Friendship Church Road
Cobb County, Georgia
Geo-Hydro Project Number 150811.20

Boring	Depth (feet)	Moisture Content (%)
B-1	10	22.8
B-1	20	27.6
B-2	15	28.8
B-2	20	47.9
B-3	5	20.5
B-3	15	45.7
B-4	10	27.5
B-4	15	33.5
B-5	5	28.1
B-5	10	32.1
B-6	5	33.1
B-6	15	29.7
B-7	5	30.3
B-7	15	50.9
B-8	71/2	22.6
B-8	15	72.9
B-9	10	28.5
B-9	15	46.9
B-10	5	26.3
B-10	10	17.8
B-11	10	20.9
B-11	15	22.9
B-12	5	39.5
B-12	7½	22.9
B-13	7½	47.5
B-13	10	50.8

Boring	Depth (feet)	Moisture Content (%)
B-14	71/2	42.9
B-14	10	48.4
B-15	5	28.2
B-15	10	29.1
B-16	71/2	28.0
B-16	10	32.4
B-17	5	18.0
B-17	10	32.7
B-18	71/2	28.3
B-18	10	30.3
B-19	71/2	32.2
B-19	10	37.9
B-20	5	30.7
B-20	10	41.7
B-21	5	23.1
B-21	10	39.2
B-22	10	26.1
B-22	15	35.7
B-23	7½	24.1
B-23	15	45.4
B-24	10	44.0
B-24	15	56.7
B-25	7½	42.0
B-25	15	48.4

,	SAMPLE NO.:	B-1	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural	Moisture Content, %	22.8						
Optimu	m Moisture Content, %	22.0	D698	25	3	5.5	4	STA 1+50
Maximu	ım Dry Density, pcf	102.5						
Depth/ Elev.	Classification		LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Brown silty fine sand (SM)							

GEO HYDRO ENGINEERS Dallas Highway 36-Inch Parallel Water Main

Geo-Hydro Project No.: 150811.20 Contract No.:

Date: 12/16/2015

	SAMPLE NO.:	B-7	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural	Moisture Content, %	30.3						
Optimu	m Moisture Content, %	21.5	D698	25	3	5.5	4	STA 22+50
Maximu	ım Dry Density, pcf	101.0						
Depth/ Elev.	· I Classification		LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Red-brown silty fine	e sand (SM)						

D

Dallas Highway 36-Inch Parallel Water Main

GEO HYDRO

 Geo-Hydro Project No.:
 Contract No.:
 Date:

 150811.20
 12/16/2015

Dry Density vs. Moisture Content

Moisture Content, %

	SAMPLE NO.:	B-11	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural	Moisture Content, %	20.9						
Optimu	m Moisture Content, %	21.0	D698	25	3	5.5	4	STA 42+50
Maximu	um Dry Density, pcf	101.0			V 4 4 7			
Depth/ Classification		ion	LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Red and brown clay	ey fine sand						

Dallas Highway 36-Inch Parallel Water Main

Geo-Hydro Project No.: 150811.20 Contract No.:

Date:

12/16/2015

,	SAMPLE NO.:	B-17	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural	Moisture Content, %	20.9						
Optimu	m Moisture Content, %	17.0	D698	25	3	5.5	4	STA 61+75
Maximu	ım Dry Density, pcf	109.0					10	
Depth/ Classificatio		ion	LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Black silty sar	nd (SM)						

GEO HYDRO ENGINEERS Dallas Highway 36-Inch Parallel Water Main

Geo-Hydro Project No.: 150811.20 Contract No.:

Date:

12/14/2015

SA	AMPLE NO.:	B-21	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural M	loisture Content, %	23.1				10-11-1		
Optimum Moisture Content, %		15.5	D698	25	3	5.5	4	STA 80+25
Maximum	Dry Density, pcf	107.5						
Depth/ Classification		on	LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Brown clayey s	ilt (ML)						

GEO HYDRO ENGINEERS

Dallas Highway 36-Inch Parallel Water Main

Geo-Hydro Project No.: 150811.20 Contract No.:

Date:

12/16/2015

SAMPLE NO.:		B-25	ASTM Spec.	Blows/ Layer	No. of Layers:	Wt. of Hammer; Ibs	Mold Dia., in.	Location
Natural Moisture Content, %		30.0						
Optimum Moisture Content, %		20.0	D698	25	3	5.5	4	STA 94+00
Maximum Dry Density, pcf		105.5		100		11010	4, 4, 1	
Depth/ Elev.	· I Classification		LL	PL	PI	% < #2	200 sieve	% < 3/4" sieve
0'-10'	Brown silty fine sand (SM)							

Dallas

Dallas Highway 36-Inch Parallel Water Main

GEO HYDRO

Geo-Hydro Project No.:

150811.20

Compaction Test Report

Date:

12/16/2015

Engineering

SOIL

TESTS, LLC

1874 Forge Street	Tucker,	GA	3008
-------------------	---------	----	------

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	
Date	

EΒ

Checked By

2/1	0/15
	10

	TESTS, LLC	Web: www.test-llc.com	Checked By
Client Pr. #	150811.2	Lab. PR. #	1507A-24-1
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag
Sample ID	21051/B-1	Depth/Elev.	
Location	17'	Add. Info	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21051	B-1	4.56	4.6
9-11-11			

Standard	buffer	solutions	used	tc
star	ndardiz	e pH met	er:	

4.0 pH 7.0 pH

10.0 pH

pH Meter ID

375

REMARKS	

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By	
	ſ

EB

	I.E. J.S.I.	Soil	11.		Fax: 770-92	23_8073	AP	1	Date	12/10/15
		Tests,	LLC		Web: www.t		APRITO DE		Checked By	18
Client Pr. #			811.2		VVED. WVVVV.	Lab. PR. #		1507/	A-24-1	
Pr. Name	Dalla	sHwy 36-inch		er Main		S. Type		В	ag	
Sample ID		2105	51/B-1			Depth/Elev.			-	
Location			17'			Add. Info				
			ASTN	I G 57/G18	7/AASHTO	T 288				
	Standa	ard Test Me	ethod for D)eterminin	g Minimum	n Laborator	y Soil Resis	stivity		6
		Determ	ination of F	Resistivity a	it as-receive	ed moisture (content			
	As-received Moisture	Content				Rem	narks			
Mass of Wet S	Sample & Tare, g	Oome]						
	Sample & Tare, g			1						
Mass of Tare,							1 1891.			
Moisture Conte			NA							
								44 J. A. 4		
				TEST	DATA					
Mass of Soil B	Box, g			Meter	Dial Reading	g, ohms	-			
Mass of Soil B	Box + Soil, g	-		Reading of	of Meter Rang	ge Multiplier	-			
Mass of Soil, g		-		Measur	red Resistano	ce, ohms	-			
	lume of Soil Box, ft ³	0.0027		Calibrated	d Soil Box Mu	ultiplier, cm	1.0			
Wet Density of	of as-placed Soil, pcf	-								
Dry Density of	f as-placed Soil, pcf	-	Repor	ted Soil Re	sistivity, oh	ms-cm	NA			
			Determine	ation of Min	nimum Soil F	Pacietivity				
			Determina	Mon or will	Imum Jon i	Resistivity				
				TEST	DATA					
				120,		arious Moistu	re Content			
21	TRIAL#	1	2	3	4	5	6	7	8	9
	al Reading, ohms	44	39	38.1	37	36	36			
	leter Range Multiplier	K	K	K	K	K	К			
	Resistance, ohms	44000	39000	38100	37000	36000	36000			
	oil Box Multiplier, cm	1.0	1.0	1.0	1.0	1.0	1.0			
	Resistivity, ohms-cm	44000	39000	38100	37000	36000	36000	21 2	1 20 11	
Measureary	.esistivity, orinto on. L	11000	30000	-						
		Repor	ted Soil M	inimum Res	sistivity, ohr	ms-cm	36000			
						-				
Note: Material	passed # 10 sieve use	d for testing								
Oven ID	0 # 496/610					Descr	iption			
Balance I					NA					
Soil Box I	34 / 17 / 17 / 17 / 17									
Resistivity Me	eter ID# 706								6	

USCS (D2487; D2488)

AASHTO (M145)

NA

NA

Г		î	
1	ĈĒ,	I	S.T.

Engineering

SOIL

TESTS, LLC

1874	Forge	Street	Tucker,	GA	3008

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

Checked By

EB 12/10/15

18

Web: www.test-llc.com

	THE RESERVE OF THE PARTY OF THE	
Client Pr. #	150811.2	
Pr. Name	DallasHwy 36-inch Parallel Water Main	
Sample ID	21051/B-1	
ocation	17'	

 Lab. PR. #
 1507A-24-1

 S. Type
 Bag

 Depth/Elev.

 Add. Info

ASTM G200

Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil							
		SAMPLE P	REPARATION				
Roots, Stones, Gravel ar	nd other deleterious ma	terial was removed prior to	testing	-			
Measurements performe	d ar room temperature	condition:	19	9.3	°C		
		TES	T DATA				
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #	‡2, mV	ORP meter Reading #3, mV	Reported O	RP value, mV
21051	B-1	334.0	358.0		361.0	3	51
				1, 1, 1			
				3-2			
4	Later Exp. 1					10.00	7. 441 (44)
DE LA CONTRACTOR DE LA				Y			
					Standard ORP calibratio (420+/-mV) used to standard		P.D.1/21/15
		REMARKS			meter:	AIGIZO OIN	Exp.10/16

REMARKS	meter:	E
	ORP Meter ID	375
	ORP Probe ID	417

	•
1	TE ST
ı	3.1.

Engineering

SOIL

Tests, LLC

1874 Forge Street	Tucker,	GA	3008
-------------------	---------	----	------

Phone: 770-938-8233 Fax: 770-923-8973

1/15

sted by	
Date	12/11
aland Da	

	Tests, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-2	24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21060/B-5	Depth/Elev.	-		
Location	10'	Add. Info			

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21060	B-5	6.55	6.6
			2.1
			1 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-
The Company	- L		- 4
	, , , , , , , , , , , , , , , , , , ,		
		12 - 2	
		٠,	

Standard buffer solutions used to
standardize pH meter:

4.0 pH

7.0 pH

10.0 pH

pH Meter ID 375

REMARKS	

TIMELY ENGINEERING SOIL

TESTS, LLC

1874	Forge	Street	Tucker,	GA 300

Phone: 770-938-8233

Web: www.test-llc.com

Fax: 770-923-8973

AR.

Tested By
Date

AV 12/11/15

18

Checked By

Client Pr. #
Pr. Name
Sample ID
Location

- 11	150811.2	
	DallasHwy 36-inch Parallel Water Main	
	21060/B-5	
	10'	

Lab. PR. # S. Type Depth/Elev. Add. Info

Bag -

1507A-24-1

ASTM G 57/G187/AASHTO T 288

Standard Test Method for Determining Minimum Laboratory Soil Resistivity

Determination of Resistivity at as-received moisture content

As-received Moisture Content	Remarks
Mass of Wet Sample & Tare, g	
Mass of Dry Sample & Tare, g	
Mass of Tare, g	
Moisture Content, %	NA .

Mass of Soil Box, g

Mass of Soil Box + Soil, g

Mass of Soil, g

Calibrated Volume of Soil Box, ft³

Wet Density of as-placed Soil, pcf

Dry Density of as-placed Soil, pcf

-	
1 1-	
-	
0.002	7
-	
_	

TEST DATA

Meter Dial Reading, ohms	
Reading of Meter Range Multiplier	
Measured Resistance, ohms	
Calibrated Soil Box Multiplier, cm	1.0

Reported Soil Resistivity, ohms-cm

NA

Determination of Minimum Soil Resistivity

TEST DATA

TRIAL#
Meter Dial Reading, ohms
Reading of Meter Range Multiplier
Measured Resistance, ohms
Calibrated Soil Box Multiplier, cm
Measured Resistivity, ohms-cm

			Trials at Va	rious Moist	ure Content			
1	2	3	4	5	6	7	8	9
5.2	4.82	4.55	4.55					
K	K	K	K					
5200	4820	4550	4550					
1.0	1.0	1.0	1.0					
5200	4820	4550	4550					

Reported Soil Minimum Resistivity, ohms-cm

4550

Note: Material passed # 10 sieve used for testing

Oven ID#	496/610
Balance ID #	563/700
Soil Box ID#	612/613/707
Resistivity Meter ID #	706

Descr	ription	
NA		

USCS (D2487; D2488) NA
AASHTO (M145) NA

TIMELY **E**ngineering

Tests, LLC

SOIL

1874 Forge Street Tucker, GA 30084 Phone: 770-938-8233

Tested By Date

EB 12/11/15 18

Checked By

Fax: 770-923-8973

Client Pr. # Pr. Name Sample ID Location

	Tests, LLC	Web: www.test-	lc.com	
	150811.2		Lab. I	
	DallasHwy 36-inch Parallel Water Main		S.	
21060/B-5				
	10'		Add.	

1507A-24-1 Lab. PR. # S. Type Depth/Elev. Bag Add. Info

ASTM G200 Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil							
Roots, Stones, Gravel a Measurements performe		erial was removed prior to	T DATA]°C			
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, mV		
21060	B-5	298.0	331.0	334.0	321		
/							
		,					
					-		
					2		
		REMARKS		Standard ORP calibratio (420+/-mV) used to standa meter:			

ORP Meter ID 375 ORP Probe ID 417

Engineering

TESTS, LLC

1874	Forge	Street	Tucker.	GA	3008

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	
-----------	--

EB

Date

12/11/15

	Tests, LLC	Web: www.	test-llc.com		Checked By	18
Client Pr. #	150811.2		Lab. PR. #	1507A-24	4-1	7 1 1 1 1
Pr. Name	DallasHwy 36-inch Parallel Water Main		S. Type	Bag		
Sample ID	21061/B-7		Depth/Elev.			100
_ocation	13'		Add. Info		1 1 1 1 1 1 1 1 1	1.00
The second second second						

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21061	B-7	5.44	5.4

Standard	buffer	solutions	used	to
star	dardiz	e pH met	er:	

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

375

REMARKS		

TIMELY	
Engineering	
SOIL	

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Fax: 770-923-8973

Tested By

ΑV 12/11/15

		80.01			COM 10 100		
		Tests, LLC	Web: www.t	est-llc.com	g of y	Checked By	18
Client Pr. #		150811.2		Lab. PR. #	1507/	\ -24-1	
Pr. Name		DallasHwy 36-inch Parallel Water Main		S. Type	B	ag	
Sample ID		21061/B-7		Depth/Elev.		-	
_ocation				Add. Info	-		
ASTM G 57/G187/AASHTO Standard Test Method for Determining Minimum					y Soil Resistivity		
Determination of Resistivity at as-received moisture content							

tent			Rema	rks	
	NA				

Mass of Soil Box, g	-
Mass of Soil Box + Soil, g	
Mass of Soil, g	-
Calibrated Volume of Soil Box, ft ³	0.0027
Wet Density of as-placed Soil, pcf	-
Dry Density of as-placed Soil, pcf	-

TEST DATA Meter Dial Reading, ohms Reading of Meter Range Multiplier Measured Resistance, ohms Calibrated Soil Box Multiplier, cm 1.0

NA Reported Soil Resistivity, ohms-cm

Determination of Minimum Soil Resistivity

TEST DATA

TRIAL# Meter Dial Reading, ohms Reading of Meter Range Multiplier Measured Resistance, ohms Calibrated Soil Box Multiplier, cm Measured Resistivity, ohms-cm

	TEOT BITTI								
	Trials at Various Moisture Content								
	1	2	3	4	5	6	7	8	9
	30.6	28.6	26.3	24	22	22			
r	K	K	K	K	K	K			
	30600	28600	26300	24000	22000	22000			
	1.0	1.0	1.0	1.0	1.0	1.0			
	30600	28600	26300	24000	22000	22000			

Reported Soil Minimum Resistivity, ohms-cm

22000

Note: Material passed # 10 sieve used for testing

Oven ID#	496/610
Balance ID #	563/700
Soil Box ID#	612/613/707
Resistivity Meter ID #	706

Description						
NA						
LISCS (D2487: D2488)	NA					

AASHTO (M145)

LIST

TIMELY **E**ngineering Soil

TESTS, LLC

1	874	Force	Street	Tucker,	GA	3008
1	014	1 Olge	Ollect	rucker,	OA	0000

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

12/11/15

Checked By

	TESTS, LLC	Web: www.test-llc.com	Checked By
Client Pr. #	150811.2	Lab. PR. #	1507A-24-1
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag
Sample ID	21061/B-7	Depth/Elev.	
Location	13'	Add. Info	

ASTM G200

Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil

Roots, Stone	s, Gravel and o	other deleterious	material was	removed pr	ior to te	esting
Measuremer	its performed ar	r room temperatu	ure condition:			

20.3

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported O	RP value, m
21061	B-7	356.0	347.0	341.0	3	48
						1 - 1 - 1
					100 TO 100	er, segar
		Mark Control of the C		Standard ORP calibratio		P.D.1/21/
		REMARKS		(420+/-mV) used to standa meter:	ardize ORP	Exp.10/1
Γ		NEWANNO		meter.		L-xp. 10/1
				ORP Meter ID	375	.a ** x y
				ORP Probe ID	417	

1	
	T.E. I S.T.
1	
- 1	

Engineering

SOIL

Tests, LLC

1	874	Force	Stroot	Tucker,	GΔ	3008
I	0/4	ruige	Sueet	rucker,	GA	3000

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	
Date	

Checked By

12/11/15 18

	Tests, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-2	24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21062/B-9	Depth/Elev.	7-		
Location	15'	Add. Info	-		

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21062	B-9	4.94	4.9
100			
		1	
	- 1		
			1
		*	
	1 .		

Standard	buffer	solut	ions	used	to
star	ndardiz	е рН	met	er:	

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

375

REMARKS	

TIMELY Engineering SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By Date

12/11/15

Fax: 770-923-8973

	TESTS, LLC	Web: www.test-llc.com		Checked By	16	
Client Pr. #	150811.2	Lab. PR. #	1507	A-24-1		
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Ba	ag		
Sample ID	21062/B-9	Depth/Elev.		-		
Location	15'	Add. Info		-		
ASTM G 57/G187/AASHTO T 288						

Standard Test Method for Determining Minimum Laboratory Soil Resistivity

Determination of Resistivity at as-received moisture content

As-received Moisture Content		Remarks
Mass of Wet Sample & Tare, g		
Mass of Dry Sample & Tare, g		. 21
Mass of Tare, g		
Moisture Content, %	NA	

Mass of Soil Box, g	
Mass,of Soil Box + Soil, g	-
Mass of Soil, g	-
Calibrated Volume of Soil Box, ft ³	0.0027
Wet Density of as-placed Soil, pcf	-
Dry Density of as-placed Soil, pcf	-

TEST DATA	
Meter Dial Reading, ohms	-
Reading of Meter Range Multiplier	
Measured Resistance, ohms	-
Calibrated Soil Box Multiplier, cm	1.0

Reported Soil Resistivity, ohms-cm

NA

Determination of Minimum Soil Resistivity

TEST DATA

TRIAL# Meter Dial Reading, ohms Reading of Meter Range Multiplier Measured Resistance, ohms Calibrated Soil Box Multiplier, cm Measured Resistivity, ohms-cm

			1201	DATA					
				Trials at Va	arious Moist	ure Content		1	
	1	2	3	4	5	6	7	8	9
	24	21	19.3	18.2	16.8	16.8			
r	K	К	K	K	K	K			
	24000	21000	19300	18200	16800	16800			
	1.0	1.0	1.0	1.0	1.0	1.0			
	24000	21000	19300	18200	16800	16800			

Reported Soil Minimum Resistivity, ohms-cm

16800

Note: Material passed # 10 sieve used for testing

Oven ID # 496/610 Balance ID # 563/700 Soil Box ID# 612/613/707 Resistivity Meter ID # 706

	Descrip	tion	
NA			

USCS (D2487; D2488) NA AASHTO (M145)

ENGINEERING

Tests, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Checked By

Tested By	EB
Date	12/11/15
	10

L	TESTS, LLC	Web: www.test-llc.com	Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag	
Sample ID	21062/B-9	Depth/Elev.		
Location	15'	Add. Info		
	AS	ГМ G200		

Sta	andard Test Metho	d for Measurement o	f Oxidation Reduction	n Potential (ORP) of S	Boil
		SAMPLE P	REPARATION		
Roots, Stones, Gravel ar Measurements performe				°C	
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, mV
21062	B-9	386.0	376.0	385.0	382

T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, m
21062	B-9	386.0	376.0	385.0	382
v -					1
				RATE OF THE STATE	, in

(420+/-mV) used to standardize ORP meter:

Exp.10/16

REMARKS

ORP Meter ID

ORP Probe ID

375

417

Engineering

TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	
-----------	--

ΕB

Date

12/11/15

	Tests, LLC	Web: www.test-llc.com	a la	Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-2	24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21068/B-13	Depth/Elev.	-		
Location	10'	Add. Info	-	+	

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

Client Sample ID	pH meter Reading	Reported pH
B-13	4.65	4.7
	>	
		,
		~
		-
- 8		

Standard	buffer	solut	ions	used	to
stan	dardiz	е рН	met	er:	

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

375

REMARKS	

Client Pr. #

Pr. Name Sample ID Location

TIMELY ENGINEERING SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

ested By	AV
Date	12/11/15
[10

Tests, LLC

Web: www.test-llc.com

w.test-llc.com

150811.2	Lab. PR. #	1507A-24-1	
DallasHwy 36-inch Parallel Water Main	S. Type	Bag	
21068/B-13	Depth/Elev.	-	
10'	Add. Info		

ASTM G 57/G187/AASHTO T 288

Standard Test Method for Determining Minimum Laboratory Soil Resistivity

Determination of Resistivity at as-received moisture content

As-received Moisture Content		 Remarks	
ample & Tare, g			
imple & Tare, g			

Mass of Wet Sample & Tare, g	
Mass of Dry Sample & Tare, g	
Mass of Tare, g	
Moisture Content, %	NA

Mass of Soil Box, g	-
Mass of Soil Box + Soil, g	-
Mass of Soil, g	-
Calibrated Volume of Soil Box, ft ³	0.0027
Wet Density of as-placed Soil, pcf	-
Dry Density of as-placed Soil, pcf	-
· ·	

TEST DATA Meter Dial Reading, ohms Reading of Meter Range Multiplier -

Measured Resistance, ohms
Calibrated Soil Box Multiplier, cm

Reported Soil Resistivity, ohms-cm

NA

1.0

Determination of Minimum Soil Resistivity

TEST DATA

TRIAL #
Meter Dial Reading, ohms
Reading of Meter Range Multiplier
Measured Resistance, ohms
Calibrated Soil Box Multiplier, cm
Measured Resistivity, ohms-cm

			Trials at Va	arious Moist	ure Content			
1	2	3	4	5	6	7	8	9
30.1	27.3	25.6	24.6	24.6				
K	K	K	K	К				
30100	27300	25600	24600	24600				
1.0	1.0	1.0	1.0	1.0				
30100	27300	25600	24600	24600				

Reported Soil Minimum Resistivity, ohms-cm

24600

Note: Material passed # 10 sieve used for testing

Oven ID # 496/610

Balance ID # 563/700

Soil Box ID # 612/613/707

Resistivity Meter ID # 706

	Descri	ption	
NA			

USCS (D2487; D2488) NA AASHTO (M145) NA

Engineering SOIL

TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

EB

Date 12/11/15 10

	Tests, LLC	Web: www.test-llc.com	A	Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-2	24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21068/B-13	Depth/Elev.	-		
Location	10'	Add. Info	-		

ASTM G200

Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil

		SAMPLE F	PREPARATION				
Roots, Stones, Gravel and other deleterious material was removed prior to testing Measurements performed ar room temperature condition: 21.7 C TEST DATA							
				4	-	. 9	
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported Of	RP value, mV	
21068	B-13	349.0	388.0	381.0	3	73	
			; (maf			' '	
		A A A A A					
				1			
	-						
				, ,			
						9 19	
			-			*	
REMARKS				Standard ORP calibration solution (420+/-mV) used to standardize ORP meter: P.D.1/21/15 Exp.10/16			
,				ORP Meter ID ORP Probe ID	375 417		

TIMELY

Engineering

SOIL

TESTS, LLC

187/	Force	Stroot	Tucker,	GA	3008
10/4	roige	Succi	Tucket,	GM	3000

Phone: 770-938-8233 Fax: 770-923-8973

Tested By	
-----------	--

EB

Date Checked By 12/14/15 18

	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507A-2	24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21085/B-17	Depth/Elev.	-		
Location	10'	Add. Info	-		

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

Client Sample ID	pH meter Reading	Reported pH
B-17	5.30	5.3
10		
. ,		
		L
		2 2 2 2
	B-17	B-17 5.30

Standard buffer solutions used to standardize pH meter:

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

 REMARKS		

TIMELY Engineering

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By EB

			SOIL			Fax: 770-9	23-8973	4		Date	12/14/15
			TESTS	, LLC		Web: www	test-llc.com	-		Checked By	18
Client Pr. #				0811.2			Lab. PR. #	#	1507	A-24-1	
Pr. Name Sample ID		Dall	asHwy 36-inc		ater Main		S. Type			Bag	
Location			210	85/B-17 10'		. 104	Depth/Elev Add, Info			-	
					1.0.57/040	7/4 4 0 1 1 7 0		<u></u>			
		Stand	lard Toet M		M G 57/G18			m, Sail Dag	iotivity		
		Stanta	ard rest w	ethod for	Determinin	g wiinimur	n Laborato	ry Soli Res	istivity		
			Detern	nination of	Resistivity a	t as-receive	ed moisture	content			
	As-received I	Moistur	e Content		_		Ren	narks			
Mass of Wet	Sample & Tare	, g									
Mass of Dry S	Sample & Tare,	g							1 1 1	·	
Mass of Tare,	, g										
Moisture Con	tent, %			NA							
M				7	TEST						
Mass of Soil E			-	-		Dial Readin	•				
Mass of Soil E	_		-	-	_		ge Multiplier				
Mass of Soil,	g lume of Soil Bo	, ₄ 3	0.0007	-		ed Resistan		- 4.0			
	of as-placed Soi		0.0027	-	Calibrated	Soil Box M	uitipiier, cm	1.0			
	f as-placed Soil			Reno	rted Soil Res	sistivity oh	ms-cm	NA			
2., 20.10.1, 0.	do pidoda oon	, po.	L]		onour ray, on		TO A			
				Determin	ation of Mini	mum Soil I	Resistivity				
					TEST	DATA					
				1		Trials at Va	arious Moistu	re Content		Т	
	TRIAL#		1	2	3	4	5	6	7	8	9
	al Reading, ohn		40.4	36.8	32.4	29.1	28.2	28.2			
	eter Range Mu		K	K	K	K	K	K			
	Resistance, oh		40400	36800	32400	29100	28200	28200			
	oil Box Multiplie		1.0	1.0	1.0	1.0	1.0	1.0			
Measured R	esistivity, ohms	s-cm [40400	36800	32400	29100	28200	28200			
			Repor	ted Soil M	inimum Resi	istivity, ohr	ns-cm	28200			
Note: Material	passed # 10 sie	eve use	d for testing								
Oven ID	# 496	6/610					Descri	ption			
Balance I	D# 563	3/700				NA					
Soil Box I	D# 612/6	13/707									
Resistivity Me	eter ID# 7	06									
					Ţ	JSCS (D24	87; D2488)	NA			
					A	AASHTO (M	1145)	NA			

1	
-1	-1
1	THE COT
1	1.1. 3.1.
1	
1	
-	

TIMELY

Engineering

SOIL

TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

12/11/15 Date

	Tests, LLC	Web: www.	test-llc.com	Checked By	
Client Pr. #	150811.2		Lab. PR. #	1507A-24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Ma	iin	S. Type	Bag	
Sample ID	21085/B-17	A 174-1 A 174 A	Depth/Elev.		
Location	10'		Add. Info		
		ASTM G200			
	Standard Test Method for Measuren	nent of Oxidation	on Reduction Potent	ial (ORP) of Soil	

SAMPLE PREPARATION

Roots, Stones, Gravel and other deleterious material was removed prior to testing

Measurements performed ar room temperature condition:

20.8

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, m
21085	B-17	368.0	352.0	364.0	361
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
				Standard ORP calibration (420+/-mV) used to standard	n solution P.D.1/21/
		REMARKS		meter:	Exp.10/1
4					
				ORP Meter ID	375
				ORP Probe ID	417

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By	
Date	

EB 12/14/15

Tests, LLC

Fax: 770-923-8973
Web: www.test-llc.com

Checked By

-
16

Client Pr. #	
Pr. Name	DallasHwy
Sample ID	
Location	

150811.2	
DallasHwy 36-inch Parallel Water Main	
21086/B-19	
10'	

 Lab. PR. #
 1507A-24-1

 S. Type
 Bag

 Depth/Elev.

 Add. Info

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21086	B-19	4.97	5.0
	-		
			-
*	2		
	-		
	N N		

Standard buffer solutions used to standardize pH meter:

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

REMARKS	

TIMELY ENGINEERING SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

ested By	EB
Date	12/14/1

Fax: 770-923-8973

12/1-0	-
18	

	TESTS, LLC	Web: www.test-llc.com		Checked By	18
Client Pr. #	150811.2	Lab. PR. #	1507	A-24-1	
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	В	ag	1, 110
Sample ID	21086/B-19	Depth/Elev.			
Location	10'	Add. Info		-	
	ASTM G 57/	G187/AASHTO T 288			
	Standard Test Method for Determ	ining Minimum Laboratory	Soil Resistivity		

	Determin	nation of Resistivity at as-received moisture c	ontent
As-received Moisture	e Content	Rema	arks
Mass of Wet Sample & Tare, g			
Mass of Dry Sample & Tare, g			
Mass of Tare, g			
Moisture Content, %		NA	
Mana of Cail Day, a		TEST DATA Meter Dial Reading, ohms	
Mass of Soil Box, g Mass of Soil Box + Soil, g		Reading of Meter Range Multiplier	
Mass of Soil, g		Measured Resistance, ohms	_
Calibrated Volume of Soil Box, ft ³	0.0027	Calibrated Soil Box Multiplier, cm	1.0
Wet Density of as-placed Soil, pcf	-	- 1949 - La Barthau Juliu 1400 <u>-</u>	
Dry Density of as-placed Soil, pcf		Reported Soil Resistivity, ohms-cm	NA

TEST DATA

TRIAL# Meter Dial Reading, ohms Reading of Meter Range Multiplier Measured Resistance, ohms Calibrated Soil Box Multiplier, cm Measured Resistivity, ohms-cm

			Trials at Va	arious Moistu	ure Content	1.5		
1	2	3	4	5	6	7	8	9
 22.4	18.7	16.9	15.3	14.8	14.8			
K	K	K	K	K	K			
22400	18700	16900	15300	14800	14800			
1.0	1.0	1.0	1.0	1.0	1.0			
22400	18700	16900	15300	14800	14800			sta jak

Reported Soil Minimum Resistivity, ohms-cm

14800

Note: Materia	passed	#	10	sieve	used	for	test	ting
---------------	--------	---	----	-------	------	-----	------	------

Oven ID# 496/610 Balance ID # 563/700 612/613/707 Soil Box ID# Resistivity Meter ID # 706

Description					
NA					

USCS (D2487; D2488) AASHTO (M145)

NA NA

TIMELY Engineering SOIL Tests, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By Date

EB 12/11/15

Web: www.test-llc.com

Checked By

			- 1		
Client Pr. #	150811.2	Lab. PR. #	1507A-24	1-1	2 151 1
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag		
Sample ID	21086/B-19	Depth/Elev.	- E		
Location	10'	Add. Info	-		1
		the polyclight compared to a second polyclic of the co			

ASTM G200 Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil						
		SAMDI E B	PREPARATION	, 12 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		
		SAMPLEP	REPARATION			
Poots Stones Gravel a	nd other deleterious ma	terial was removed prior to	testing			
Measurements performe			20.8	l°c		
Wedstrements performe	da room temperatare		T DATA] -		
, , , ,		, 20				
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, mV	
21086	B-19	346.0	353.0	335.0	345	
		2 2 3 3 3 3			hour, a service	
				1	- All	
				, , , , , , , , , , , , , , , , , , ,	PORT OF THE PART O	
-						
					2.170	
2					12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	*					
					ta jarae	
		2 2 2				
Г		REMARKS		Standard ORP calibratio (420+/-mV) used to standa meter:	n solution P.D.1/21/15 Exp.10/16	
				ORP Meter ID	375	
				ORP Prohe ID	417	

Client Pr. #

Pr. Name

Sample ID Location

Timely Engineering Soil

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

EB 12/10/15

Date 12/10/15
Checked By

Soil Tests, llc

TESTS, LLC	Web: www.test-llc.com
150811.2	Lab. PF
DallasHwy 36-inch Parallel Water Main	S. T
21052/B-21	Depth/E
401	A dd 1

Lab. PR. #	1507A-24-1	
S. Type	Bag	
Depth/Elev.		
Add. Info		

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21052	B-21	5.95	6.0
		100	
1 100			
			7:47.

Standard buffer solutions used to standardize pH meter:

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

	REMARKS		
4.4			

TIMELY **E**ngineering SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

ested By	EB
Date	12/10/1

Tests, LLC

Fax: 770-923-8973 Web: www.test-llc.com

Checked By

Client Pr. #	150811.2	Lab. PR. #	4.8
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	
Sample ID	21052/B-21	Depth/Elev.	
Location	12'	Add. Info	
Augustin and a second			

Client Pr. #		150811.2			Lab. PR. # 1507A-24-1					
Pr. Name	Dall		asHwy 36-inch Parallel Water Main			S. Type	Bag			
Sample ID Location			21052/B-21 12'			Depth/Elev. Add. Info				
Location										
					7/AASHTO					
	Stand	lard Test M	ethod for I	Determinin	g Minimun	n Laborato	y Soil Res	istivity	. E	
								3		
		Determ	nination of F	Resistivity a	t as-receive	ed moisture	content			
	As-received Moistur	e Content		٦		Rem	narks		1	
Mass of Wet	Sample & Tare, g			-						
Mass of Dry	Sample & Tare, g			-						
Mass of Tare	, g			-					l	
Moisture Cor	itent, %		NA							
				7507	DATA					
			1		DATA			1		1 1 10 10 10
Mass of Soil			-		Dial Reading		-			
Mass of Soil			-			ge Multiplier				
Mass of Soil,	-	-	-		ed Resistan		-	-		
1	olume of Soil Box, ft ³	0.0027	-	Calibrated	Soil Box M	ultiplier, cm	1.0	J		
	of as-placed Soil, pcf	-	Pana	dad Cail Da	olothuitu ob	I	NA	1		
Dry Density o	f as-placed Soil, pcf	_	Kepoi	tea Son Re	sistivity, oh	ms-cm	NA			
								TOTAL TOTAL CONTRACTOR		
			D - 1 1			Danie 4114.				
			Determina	ation of Min	imum Soil F	Resistivity				
				TEST	DATA					
				TEST		arious Moistu	re Content			
	TRIAL#	1	2	3	4	5	6	7	8	9
Motor Di		10.7	10	9.4	9.3	9.11	9.01	9.01		
	al Reading, ohms			9.4 K	9.3 K	9.11 K	9.01 K	8.01 K		
	Meter Range Multiplier	K 10700	K 40000		9300	9110	9010	9010		
	Resistance, ohms	10700	10000	9400	1.0	1.0	1.0	1.0		
	oil Box Multiplier, cm	1.0	1.0		9300	9110	9010	9010		1
Measured F	Resistivity, ohms-cm	10700	10000	9400	9300	9110	9010	9010		
		Reno	ted Soil Mi	inimum Res	istivity, ohr	ns-cm	9010			
		. topo.			,,	[ļ		
Note: Material	passed # 10 sieve use	ed for testing								
Note. Waterial	passed ii 10 sieve doe	od for toothing								
Oven I	D# 496/610	1				Descr	ption			
Balance					NA					
Soil Box		1			2					
Resistivity M										7
					USCS (D24	87; D2488)	NA			
					AASHTO (M		NA			
					MASHIU (N	// (1 4 5)	INA			- 1

TIMELY **E**ngineering

SOIL

Tests, LLC

1074	Force	Stroot	Tucker	CA	3008
10/4	rorge	Street	Tucker,	GA	3000

Phone: 770-938-8233

Tested By

EB

Date

12/10/15 18

	Tests, Llc	Web: www.test-llc.com	Checked By	5
Client Pr. #	150811.2	Lab. PR. #	1507A-24-1	-
Pr. Name	DallasHwy 36-inch Parallel Water Main	S. Type	Bag	
Sample ID	21052/B-21	Depth/Elev.	<u> </u>	
Location	12'	Add. Info		

ASTM G200

Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil

SAMPL	E	PRE	PAR	ATION
-------	---	-----	-----	-------

Roots,	Stones,	Gravel	and other	deleterious	material	was	removed	prior to	testing

Measurements performed ar room temperature condition:

19.3

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, m\
21052	B-21	368.0	385.0	390.0	381
,					
		*			
		REMARKS		Standard ORP calibratio (420+/-mV) used to standa meter:	n solution ardize ORP Exp.10/16
Γ		TALIVII WAY			
				ORP Meter ID	375
*				ORP Probe ID	417

TIMELY Engineering SOIL TESTS, LLC

Phone: 770-938-8233 Fax: 770-923-8973

Tested By

EB

Date 12/08/15

18 Checked By

Client Pr. # Pr. Name Sample ID Location

	TESTS, LLC	Web: www.test-llc.com
	150811.20	Lab. Pl
	Dallas Hwy 36-inch Parallel Water Main	S. T
	21042/B-24	Depth/E
1 2 1 2 2 2	15	Add. I

Lab. PR. # 1507A-24-1 S. Type Bag Depth/Elev. Add. Info

ASTM G51/AASHTO T289

Standard Test Method for Determining pH of Soil for Use in Corrosion Testing

SAMPLE PREPARATION

Air dried Material passing #10 sieve was used for testing.

TEST DATA

T.E.S.T. Sample ID	Client Sample ID	pH meter Reading	Reported pH
21042	B-24	4.95	5.0
		4	
			9 26 28 7 X
*			

Standard buffer solutions used to standardize pH meter:

4.0 pH

7.0 pH

10.0 pH

pH Meter ID

REMAR	KS			
		-		

Location

TIMELY ENGINEERING SOIL

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233 Fax: 770-923-8973

Web: www.test-llc.com

AR

Tested By	EB
Date	12/08/15
Checked By	18

Client Pr. # 150811.20
Pr. Name Dallas Hwy 36-inch Parall
Sample ID 21042/B-24

150811.20
Dallas Hwy 36-inch Parallel Water Main
21042/B-24
15

 Lab. PR. #
 1507A-24-1

 S. Type
 Bag

 Depth/Elev.

 Add. Info

		ASTM G 57/G187/AASHTO T 288				
Standa	ard Test Met	thod for Determining Minimum Laboratory	Soil Resi	stivity		
	Determin	nation of Resistivity at as-received moisture c	ontent			
As-received Moisture	e Content	Rema	arks			
Mass of Wet Sample & Tare, g					Arrive View	
Mass of Dry Sample & Tare, g						
Mass of Tare, g						
Moisture Content, %		NA				
		TEST DATA				
Mass of Soil Box, g		Meter Dial Reading, ohms	-			
Mass of Soil Box + Soil, g	-	Reading of Meter Range Multiplier	-			
Mass of Soil, g	-	Measured Resistance, ohms	-			
Calibrated Volume of Soil Box, ft ³	0.0027	Calibrated Soil Box Multiplier, cm	1.0			
Wet Density of as-placed Soil, pcf		-	NIA.			
Dry Density of as-placed Soil, pcf		Reported Soil Resistivity, ohms-cm	NA			
		Determination of Minimum Soil Resistivity				
		TEST DATA				
		Trials at Various Moistur	e Content			

TRIAL #
Meter Dial Reading, ohms
Reading of Meter Range Multiplier
Measured Resistance, ohms
Calibrated Soil Box Multiplier, cm
Measured Resistivity, ohms-cm

			Trials at Va	arious Moist	ure Content			
1	2	3	4	5	6	7	8	9
32	28.5	24.6	23.4	23	23			
K	К	K	K	K	K			
32000	28500	24600	23400	23000	23000			
1.0	1.0	1.0	1.0	1.0	1.0			
32000	28500	24600	23400	23000	23000	21 11 11 11 1		

Reported Soil Minimum Resistivity, ohms-cm

23000

Note: Material passed # 10 sieve used for testing

Oven ID # 49

Balance ID # 56

Soil Box ID # 612/

Resistivity Meter ID #

496/610
563/700
612/613/707
706

	Description								
1	NΑ								

USCS (D2487; D2488) NA
AASHTO (M145) NA

TIMELY ENGINEERING SOIL TESTS, LLC

1874 Forge Street Tucker, GA 30084

Phone: 770-938-8233

Tested By	
Date	

12/08/15

18

Fax: 770-923-8973 Web: www.test-llc.com

Checked By

Client Pr. #	150811.20
Pr. Name	Dallas Hwy 36-inch Parallel Water Main
Sample ID	21042/B-24
Location	15

T	Lab. PR. #	1507A-24-1	
7	S. Type	Bag	
1	Depth/Elev.		
	Add. Info		_
_			_

ASTM G200

Standard Test Method for Measurement of Oxidation Reduction Potential (ORP) of Soil

		SAMPLE P	REPARATION		
Roots, Stones, Gravel ar Measurements performe			testing 18.6	°C	
T.E.S.T. Sample ID	Client Sample ID	ORP meter Reading #1, mV	ORP meter Reading #2, mV	ORP meter Reading #3, mV	Reported ORP value, mV
21042	B-24	297.0	333.0	336.0	322
		REMARKS		Standard ORP calibratio (420+/-mV) used to standa meter:	

ORP Meter ID

ORP Probe ID

375