WATER SUPPLY PROGRAM RIVER INTAKE PUMP STATION

VOLUME 4 ADDITIONAL INFORMATION

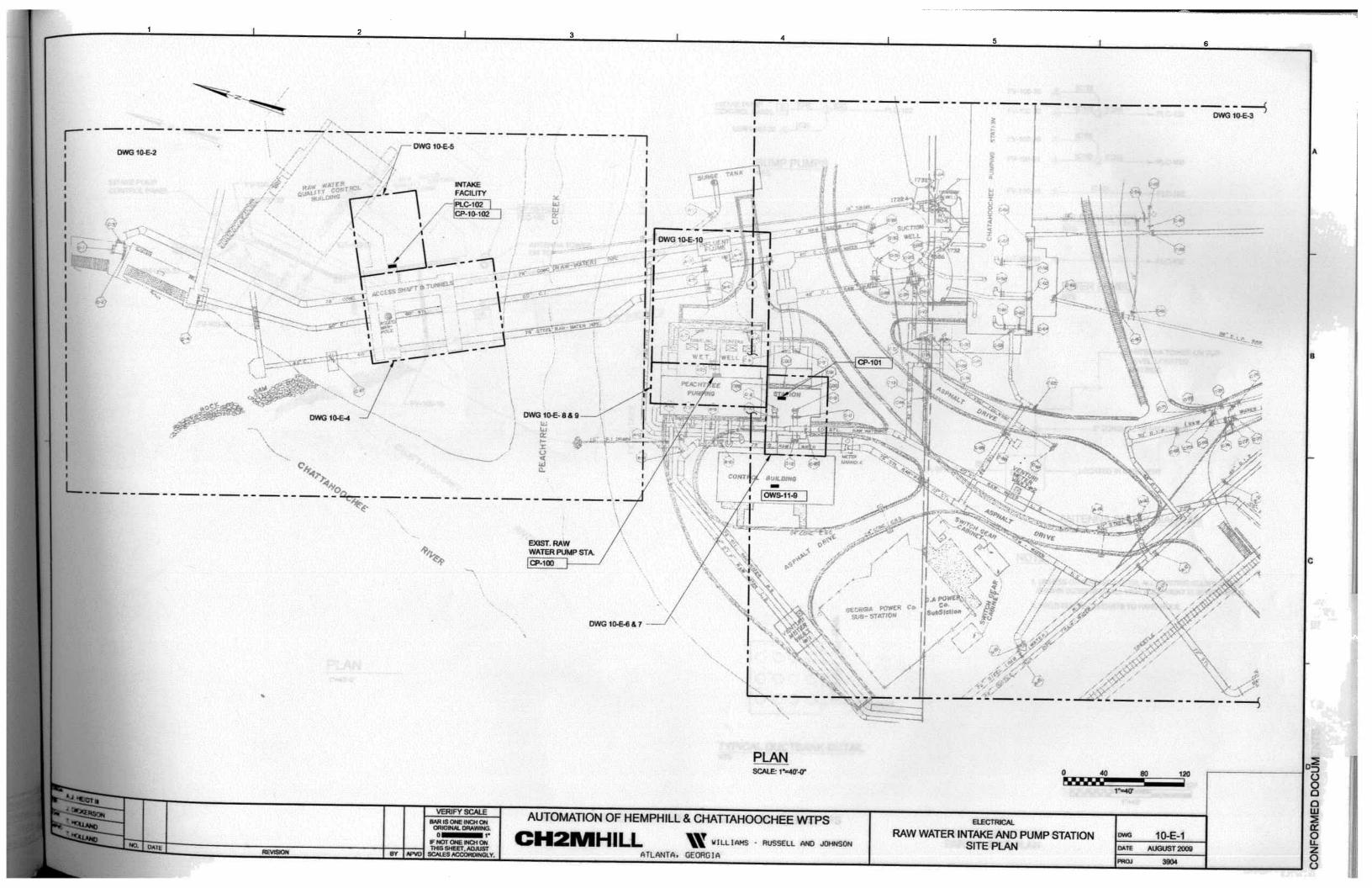
ISSUED FOR BIDDING NOVEMBER 26, 2019

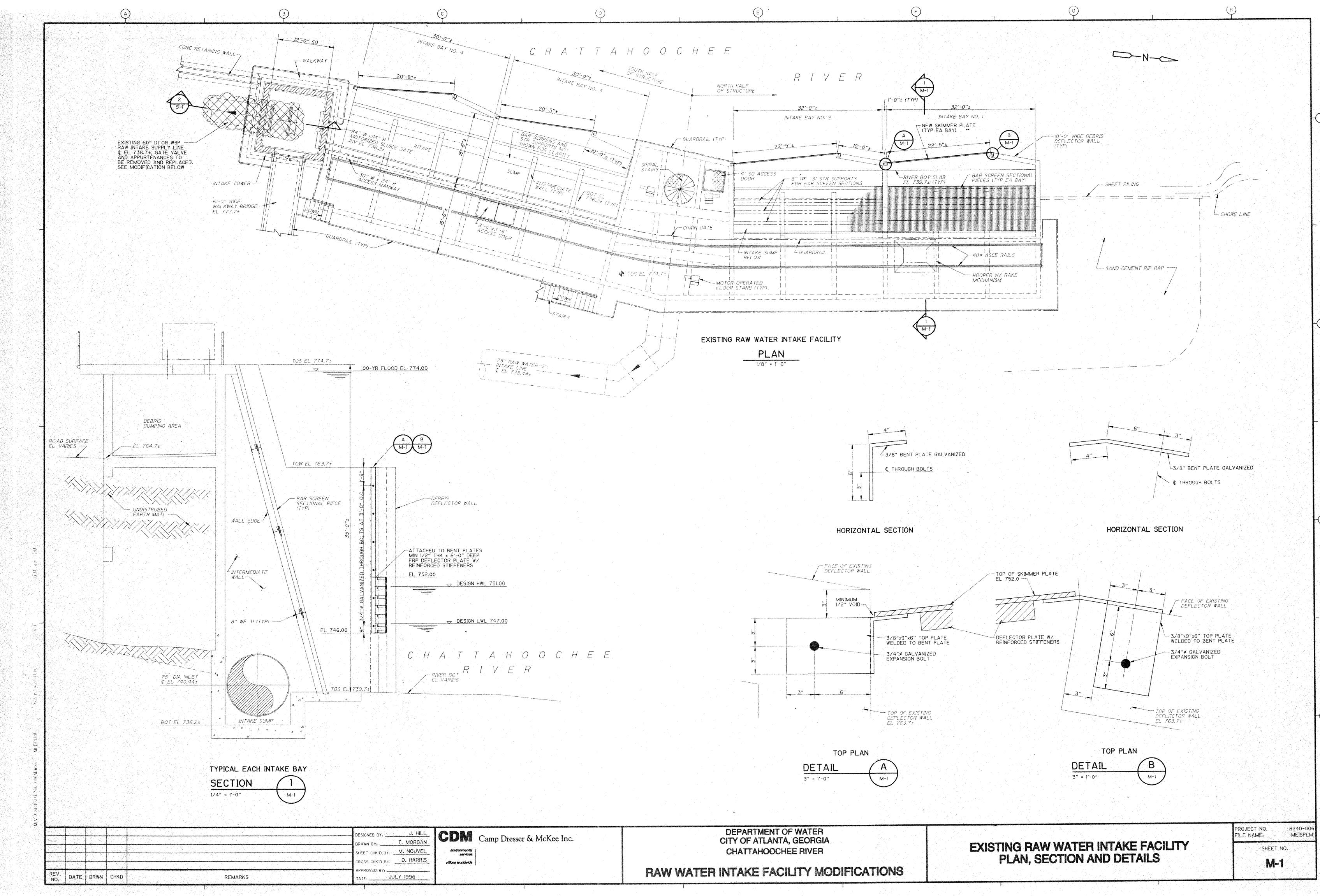
Atlanta, Georgia

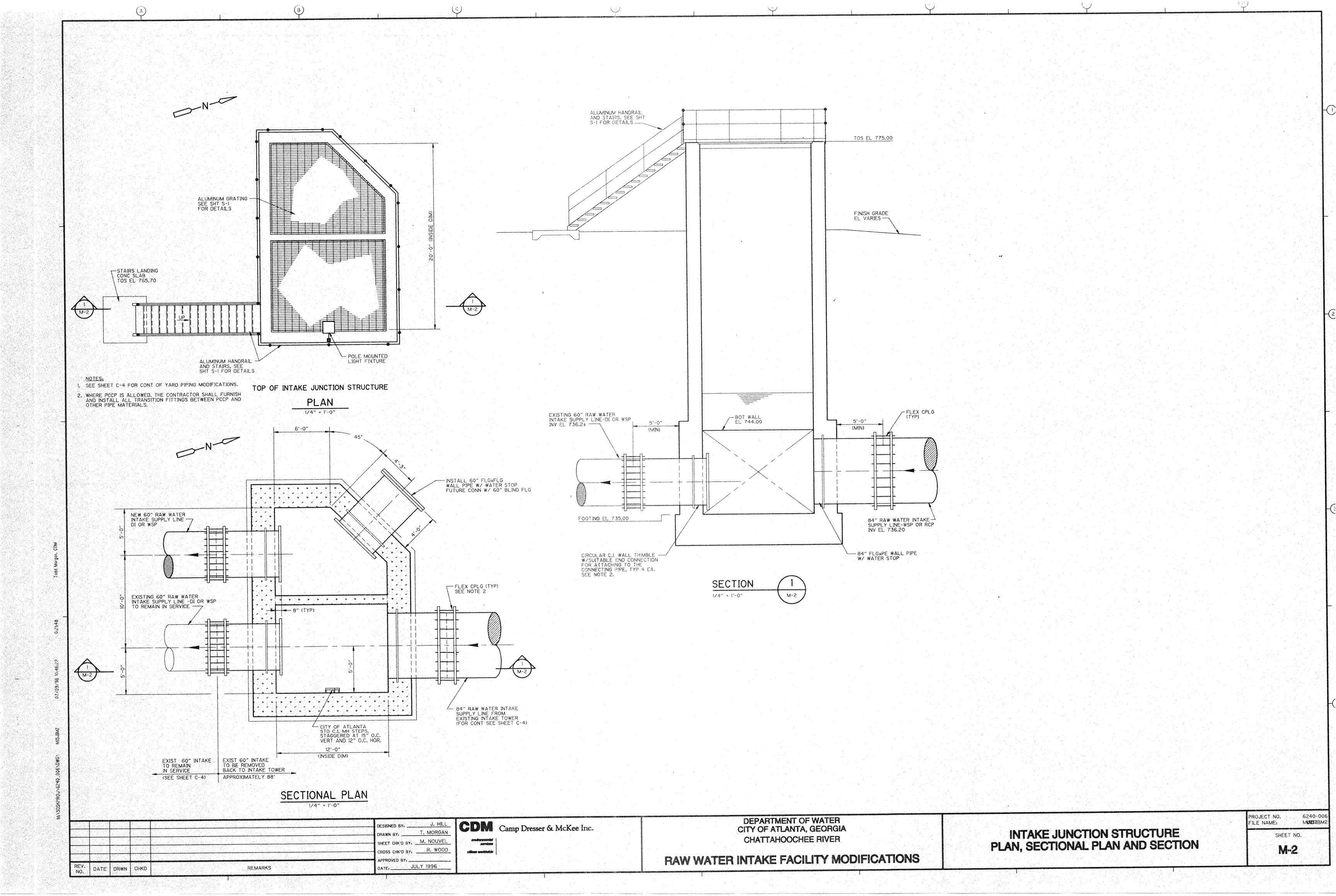
Keisha Lance Bottoms Mayor City of Atlanta

Kishia L. Powell Commissioner Department of Watershed Management

> David L. Wilson II Chief Procurement Officer Department of Procurement


TABLE OF CONTENTS


Volume 4 of 4


- Part 1 Record Drawings of Raw Water Intake
- Part 2 Duperon Proposal
- Part 3 Geotechnical Information
- Part 4 CSX Agreement
- Part 5 River Intake Shaft Workplan- Not for Construction
- Part 6 Product Data

Vol 4 Additional Information River Intake Pump Station

Part 1 - Record Drawings of Raw Water Intake

Vol 4 Additional Information River Intake Pump Station

Part 2 – Duperon Proposal

Date: March 4, 2019

Project: FC-1190004, Chattahoochee River Intake Pump Station

Bid Date:

Substantial Completion:

Addendum: None received or acknowledged

Owner:

City of Atlanta Suite 1900 City Hall South 55 Trinity Avenue, S.W. Atlanta, GA 30303

Duperon Contact:

Tammy Blanchard – Sales Project Manager tblanchard@duperon.com

Mark Hickok – Regional Sales Manager mhickok@duperon.com (989) 412-0289 Local Representation: Clint Curl The TDH Company, LLC (770) 509-1808 ccurl@tdhco.com

Proposal # 8991 R5

To: All Bidding Contractors

Duperon is pleased to offer the following scope of supply including mechanical bar screen and accessories, as listed in the scope of supply. Please also refer to Duperon Contractor Installation Guides and Terms and Conditions attached.

We appreciate the opportunity to provide the following pricing for the screening requirements at the Chattanhoochee River Intake Pump Station project. We look forward to the opportunity to work with you and thank you for your consideration.

Note: Duperon equipment is the basis of design and sole sourced for the mechanical bar screen and conveyance system for this project.

BID Proposal Number P8991 R5

Scope of Supply:

Specification Sections: 15101 Drawings: DP0-001, DP1-001, DP2-001, DP2-003, DP2-004, E5-201, E6-202, EI-002, PID-2

(2) Mechanical Bar Screen - Stainless Steel Link Driven, Front Cleaning, Front Return

Model FlexRake®

•

- FPFS, Full penetration Fine Screen– Outdoor Installation, Modular Construction
- Continuous Cleaning without an operator
- Head Sprocket Only Design no critical components under water
- Continuous Cleaning, top to bottom, the entire width of scraper
- Scrapers of UV Stabilized UHMW and/or Stainless Steel
- SSTL304 side fabrications, dead plate and cross members
- SSTL304 full enclosure covering from deck to discharge
- SSTL304 enclosure access panels
- SSTL304 cross channel supports
- SSTL304 custom close outs
- SSTL316 FlexLinks and pins
- Modular construction
- Anchor bolts (provided by others)
- 2HP motor
- SSTL304 Drive Head:
 - Drive Sprockets and end castings SSTL304
 - Drive Shaft SSTL304

Dimensions and design criteria

- 8.5 ft channel width
- 7.83 ft screen width
- 60.5 ft channel height
- 60.5 ft channel invert to top of operating deck
- 5.5 ft discharge height onto conveyor
- 72 ft nominal length of FlexLink and scraper system
- 46 ft of barscreen
- 0.25 inch clear opening
- 0.25 inch x 0.75 inch x 0.13 inch SSTL316L tear drop bar screen
- 2:1 UHMW to SSTL304 scraper ratio
- 15 degree from vertical
- 1 ft of head differential structural design
- 43 ft maximum water level during 100 year storm
- 21 ft normal high water level
- 16 ft normal low water level
- 21,800 lbs estimated weight

Hydraulic Profile

• See attached models for hydraulic performance information.

Clarifications/Exceptions/By Others

- The bar screen will be shipped in sections. Modular construction is required because of the length of the screen, please see our Modular Construction notes below.
- Field assembly of SSTL screen enclosure required.
- Some minor field welding will be required at the top of the channel support bar and at the operating deck anchor points.
- Crane may be required for unloading.
- Spreader bar may be required for unloading

Duperon Corporation | 1200 Leon Scott Court | Saginaw, MI 48601 | P 989.754.8800 | F 989.754.2175 | TF 800.383.8479

 Scope of supply and pricing above does not include additional structure for seismic, additional head differential or wind conditions.

Estimated Anchor Bolts Needed Mechanical Bar Screen:

Estimated Anchor Bolts Needed (not included in scope of supply):

- Anchor Bolts
 - Bolts for anchor toes and plates
 - (12) 12 mm (1/2 inch) diameter x 115 mm (4-1/2 inch) long Embed HAS Rods w/ Hilti RE-500V3 Safe Set Adhesive System
 - Bolts for Return Guide / Closeout, per screen
 - (14) 9.5 mm (3/8 inch) diameter x 85 mm (3-3/8) inch long Embed HAS Rods w/ Hilti RE-500V3 Safe Set Adhesive System
 - (3) Epoxy tube
 - o (1) Dispenser
 - Above quantities not guaranteed as accurate, final quantities will be outlined in submittals.
- Some minor field welding will be required at the top of the channel support bar and at the operating deck anchor points

(1) Screenings Belt Conveyor for (4) four (2 now, 2 future) screening systems

- Flexible Rake Bar Screens Belt Conveyor # 11-BC-001, 24" wide x 54'-0" ± long approximate centers, troughing design, horizontal configuration, and capable of conveying the screenings from the initial two trash rakes and two future trash rakes and transfer to owner provided dumpster and will have the following component and construction features:
- Motor: 5 HP, 1800 RPM, 230/460 volt, 3/60 Hz, TEFC, NEMA Design B, Class F Ins, 1.15 s,f., energy efficient motor
- Reducer: AGMA, Class II, helical gear shaft mount reducer assembly with V-belt and sheave reducer input drive to provide required belt speed. Complete with st steel OSHA style V-belt guard.
- Head Pulley: 16" diameter x 28" face, positive crowned steel drum pulley with compression type hubs and 1/2" thick, vulcanized herringbone rubber lagging.
- Tail Pulley: 16" diameter x 28" face, positive crowned steel drum pulley with compression type hubs.
- Snub Pulley: 6" diameter x 28" face, positive crowned steel drum pulley with compression type hubs, shaft and pillow block bearings
- Shafting: C-1045, turned and polished, 2 7/16" diameter minimum.
- Bearings: Self-aligning, anti-friction, roller bearing pillow blocks.
- Screw Take-Up Assemblies: Protected screw type with min 12" travel and roller bearing assemblies. The take-up assemblies will also include stainless steel adjusting rods, brass bearing capture nuts and st steel frames
- Belting: 24" wide, 2-ply, 220 PIW, conveyor belting with 1/8" x 1/16" MORS covers.
- Belt Splice: Shop installed st steel mechanical belt splice
- Idlers: CEMA "C," 5" diameter 20 degree troughing idlers spaced on 4'-0"max centers. Idlers at load point to be spaced on 2'-0" centers. CEMA "C," 5" diameter flat return idlers spaced on maximum 10'-0" centers. Idler rolls will be polyethylene construction with sealed bearings and st steel brackets.
- Belt Cleaner: Spring tensioned belt wiper for location at discharge pulley with adjustable blade and replaceable urethane wiper blade.
- Skirting: Continuous, fabricated from #10 ga 304 st steel, 16" wide carry width, with adjustable rubber seal strips at belt surface and skirting splash plates at screen load area's
- Safety Stop Switch: NEMA 4X, 120 volt, 20 amp, complete with orange vinyl coated, galvanized aircraft cable and mounting hardware.
- Motion Switch: NEMA 4X, 120 volt, 20 amp,non contacting mag disc mounted on tail pulley
- Belt Alignment Switch: Qty (2) NEMA 4X, 120 volt, 20 amp, with mounting brackets
- Pulley Guards: Head and tail pulley guards fabricated from FRP, OSHA Safety Yellow

Duperon Corporation | 1200 Leon Scott Court | Saginaw, MI 48601 | P 989.754.8800 | F 989.754.2175 | TF 800.383.8479

- Drip Pans: Fabricated from min #12 ga 304 st steel with 4" dia drain,
- Deck Plate: Continuous, fabricated from #12 ga 304 st steel
- Discharge Chute: Fabricated from min #12 ga 304 st steel, approx. 20' long with st steel supports to wall
- Conveyor Frame and Supports: Fabricated from 304 st steel structural shapes and plates

Warranty

One Year Standard provided from date of startup or 18 months from date of shipment (whichever occurs first)

(2) Controls Package, Main Panel Screens

- Main control breaker for incoming power 480V/3ph
- Wall mount NEMA 4X SS enclosure
- Enclosure to be:
 - Located indoors in an unclassified area
 - o Located in a temperature controlled environment
 - Not located where temperatures drop below 0°C (32°F) frequently
 - Not located where temperatures exceed 40°C (105°F) frequently
- Enclosure to include equipment
 - o (1) FlexRake with 2HP motor driven by AC Tech VFD with panel mounted keypad
- PLC Based logic, to include
 - (1) CompactLogix PLC with Ethernet
 - o Panelview Plus HMI, (human-to-machine interface)
 - Ethernet card for PLC
 - Pilot lights, push buttons and selector switches on front door
 - o Terminal blocks, ETM's, breakers, and relays where required
 - o Hand-Off-Auto selector switch uses PB station in Hand mode
 - o Hard contact SCADA Interlock(s) Run, No Fault, Auto, High Level, Remote start
 - o Differential level controls with back up cycle timer
 - Adjustable on/off cycle timers
 - Machine runs when differential/upstream level is above setpoint, remote start or run timer is active then it will speed up based on size of differential/upstream level
 - o Line reactor
 - o Load Reactor
 - o (2) LUT 400 Ultrasonic transmitter
- Weather protection devices inside enclosure
 - Air conditioner with integral heater
 - Sun shield for HMI

Instrumentation

- Differential Level Control per channel
 - (2) XPS series Ultrasonic Transducers with 150 foot long cabling. (must be mounted at least 1.00 foot above highest water during operation.)
- Local to equipment mounted devices
 - (2) Three Button NEMA 4X Enclosure for E-Stop, Jog-Reverse and Forward per screen

(1) Controls Package, Main Panel Conveyor

- Main control breaker for incoming power 480V/3ph
- Wall mount NEMA 4X SS enclosure
- Enclosure to be:
 - Located outdoors in an unclassified area
 - Not located where temperatures drop below 0°C (32°F) frequently
 - Not located where temperatures exceed 40°C (105°F) frequently
- Enclosure to include equipment
 - (1) Conveyor with 5HP motor driven by Full Voltage motor starter

- Relay Based logic, to include
 - Pilot lights, push buttons and selector switches on front door
 - o Terminal blocks, ETM's, breakers, and relays where required
 - o Hand-Off-Auto selector switch uses PB station in Hand mode
 - o Hard contact SCADA Interlock(s) Run, No Fault, Auto, High Level, Remote start
 - o Differential level controls with back up cycle timer
 - Adjustable on/off cycle timers
 - o Machine runs when remote start is active
- Weather protection devices inside enclosure
 - Thermostat for fan and heater with rain hoods
- Instrumentation

none
 Local to equipment mounted devices

- (1) Two Button NEMA 4X Enclosure for Stop and Forward
- (1) Safety stop switches (provided by conveyor manufacturer)
- (1) Zero speed switch (provided by conveyor manufacturer)

Controls Clarifications/Exceptions/By Others

- Any changes to the scope of supply could have direct impact to pricing
- The price below includes our controls as indicated above
- All conduit and field wiring between the equipment
- Mounting hardware

FlexRake Spare Parts

- (1) Drive Clevis Pin
- (10) Snap Rings
- (4) Link Clevis Pins
- (4) Hex Head Cap Screw
- (4) Scraper Nut
- (1) Never Seez
- (1) Snap Ring Tool
- (1) 1 oz. Never Seez

Conveyor Spare Parts

- (1) Drive shaft pillow block bearing
- (1) Tail shaft take up bearing
- (3) Trough carry idlers
- (1) Return idler
- (1) SSTL mechanical belt splice kit with tools and template
- (1) Wiper blade of each size and type
- (1) Set vee belts
- 20 ft of conveyor belting

On Site Technical Assistance for installation supervision

- (1) Trip(s)
- (1) Technician
- (1) 8 hour man-days
- If additional Technical Service days are required, please add per the rates included in the Clarifications section of this scope of supply.

On Site Technical Assistance for installation inspection, start-up and O&M training

- (1) Trip(s)
 - (1) Technician
- (1) 8 hour man-days
- If additional Technical Service days are required, please add per the rates included in the Clarifications section of this scope of supply.

Operation and Maintenance Manuals

• 6 Hard Copies

Warranty for Mechanical Bar Screen

- One Year Standard material and workmanship
- Five year on rotating parts

Freight to Jobsite

Price: To be provided

Price is valid for 180 days from bid date.

Delivery:

- Submittals: 4-6 weeks after approved purchase order, based on workload
- Equipment Delivery: 8-12 weeks after approval based on workload
- FOB Factory, Freight Paid

Modular Construction Notes:

- The bar screen will be shipped from the factory fully assembled with the exception of the operating deck enclosure(s) and intermediate deck side shields, if there are any specified.
- If this installation requires modular construction, please be guided by the following:
- The installation contractor will need to dissemble the bar screen at the site and in locations directed by Duperon and approved for during the submittal process. The contractor will then reassemble the bar screen in the facility. The contactor is required to provide all material, equipment and labor for this process.
- The overall bar screen unit will be fabricated so that it can be split into disassembled segments at the project site. Precise segments depend on site constraints and bar screen dimensions. Each segment will have the exploded sidefab detail as illustrated in our installation guide. The weights of the sections will be proportioned from the overall weight listed in the proposal.
- The drive head assembly may need to be removed if site constraints, for example navigating around a corner, require it.
- The FlexLink and scraper system will need to be removed in segments of approximately six links, or about 6 ft each. The FlexLinks have a snap ring holding the FlexLink pin. These FlexLinks will need to be marked so that the contractor knows what FlexLink connects to what FlexLink during the reassembly process.

- The enclosures and or side shields for the operating deck and intermediated deck, if required will be shipped unassembled. These will comprise anywhere from 10 to 20 pieces per bar screen. These pieces of SSTL sheet metal will need to be bolted together once the bar screen is installed.
- Duperon contact: If any have further questions on our modular construction process, please contact our application engineer, Jan LaFave at 800.383.8479
- Disclaimer: Duperon cautions the contractor, whom we assume is familiar with bar screens that an allowance for the disassembly should be accounted for in their bid. Without knowing the skill set, rigging provisions, and manpower the selected contractor will apply, it is difficult for us to provide specific details on this subject. The above language is only made as an approximation and is not guaranteed.

Exceptions:

As noted

Clarifications:

- Prices are valid for 180 days unless stated otherwise in the proposal
- See Duperon Contractor Installation Guides for guidance in estimating these costs.
- Duperon requires 3 week's advanced notice in writing to schedule field service technician on site.
- Field Services will be provided as outlined in this proposal. Duperon field service rate is \$750 per day plus travel and per diem expenses. If field service personnel arrive on site as scheduled and the project is not ready for intended services to be performed, Duperon will invoice for additional days, if required. If the time required is greater than the time listed in this proposal, Duperon will invoice at the above rates.
- The specifications listed are the only specifications which shall apply to this proposal either directly or by reference. Any additional specifications, with equipment or requirements specified therein, that are not specifically included as part of this offer are excluded from this proposal.

Not Included:

- Anything not specifically stated in this Proposal.
- Bonding, tariffs, permits, taxes, liquidated damages.
- Construction and /or installation work of any kind at the jobsite.
- On-site conditions affecting the work described or which affects the installation.
- Conduit, stands, control mounting wiring, junction boxes, or other accessories.
- Any site work or installation tasks (ie, unloading, placement, dewatering, diving, clearing the forebay, wiring, provision of concrete structure, etc.), equipment (such as cranes, hammer drills, etc.), or anchor bolts.
- Pre-installation tasks such as touch-up painting, checking bolts for tightness, removal of shipping containment devices, etc.
- Engineering: Does not include drawings other than those for the FlexRake.
- Additional structure for seismic or wind conditions.
- Offloading or handling of delivered equipment.
- Union labor for all field support services.
- Controls not specifically listed above.
- Videotaping of the training sessions
- Release of proprietary information.
- Insulation or weather proofing.
- Gita/field painting or tauch up
- Site/field painting or touch up.

- Vibration and noise testing.
- Anchor Bolts by others.
- Discharge system.
- Stilling wells.

Payment Terms:

- 5% Due with placement of order
- 20% Invoiced upon submittal of engineering drawings
- 65% Invoiced at time of shipment
- 10% Invoiced upon successful start up or 60 days after shipment, whichever is less.
- All payments are due Net 30 days
- Based upon review and approval by Duperon credit department.
- No retentions allowed.

Proposal Terms:

- This offer is subject to the enclosed Duperon Corporation Terms and Conditions page unless alternate terms and conditions are specifically negotiated in writing and are signed/accepted by Duperon Corporation at the time of purchase.
- May be subject to material price escalation.
- This proposal is based upon the information available at this time and may be impacted by future specifications, scope, and other requirements.
- Duperon Corporation retains the right to revise, withdraw, or negotiate this offer at any time prior to signing a material contract.

Order Processing:

To facilitate timely order processing and submittals, refer to this proposal number and please list purchaser contact, telephone, fax, and email with your purchase order. Please provide with your order a copy of trade references and, if tax exempt, please provide a resale or tax exemption certificate. Purchase Order should be sent to and payment remitted to:

Duperon Corporation 1200 Leon Scott Court Saginaw, MI 48601 Ph. 800-383-8479 Fax 989-754-2175

Duperon Corporation Terms and Conditions

The Terms and Conditions ("Terms") contained herein shall apply to all Duperon Corporation Purchasers. These Terms apply in lieu of any course of dealing between the parties or usage of trade in the industry. Any changes in the Terms contained herein must specifically be agreed to in writing and signed by Duperon Corporation before becoming binding on either party. The sale and purchase of equipment described herein shall be governed exclusively by the foregoing and the following Terms:

1. SPECIFICATIONS: The equipment may not be in strict compliance with the Engineer's/Owner's plans, specifications, or addenda as there may be deviations. The equipment will, however, meet the general intention of the mechanical specifications as described by Duperon Corporation.

2. ITEMS INCLUDED: The proposal includes only the equipment and does not include erection, installation, accessories or associated materials such as controls, piping, etc., unless specifically listed.

3. PARTIES TO CONTRACT: Duperon Corporation is not a party to or bound by the terms of any contract between Purchaser and any other party. Duperon Corporation's undertakings are limited to those defined in the contract between Duperon Corporation and its Purchasers.

4. PRICE AND DELIVERY: All selling prices quoted are subject to change without notice after 30 days from the date of a proposal unless specified otherwise. Unless otherwise stated, all prices are F.O.B. Duperon Corporation or its supplier's shipping points with freight allowed. All claims for damage, delay or shortage shall be made by Purchaser directly against the carrier. When shipments are quoted F.O.B. job site or other designation, Purchaser shall inspect the equipment shipped, notifying Duperon Corporation of any damage or shortage within forty-eight hours of receipt. Failure to so notify Duperon Corporation shall constitute acceptance by Purchaser, relieving Duperon Corporation of any liability for shipping damages or shortages.

5. PAYMENTS: All invoices are net 30 days. Delinquencies are subject to a 1.5% service charge per month or the maximum permitted by law, whichever is less on all past due accounts. Pro rata payments are due as shipments are made. If shipments are delayed by the Purchaser, invoices shall be sent on the date when Duperon Corporation is prepared to make shipment and payment shall become due under standard invoicing terms. If the work to be performed hereunder is delayed by the Purchaser, payments shall be based on percentage of completion. Products held for the Purchaser shall be at the risk and expense of the Purchaser. Unless specifically stated otherwise, prices quoted are for equipment only. These Terms are independent of and not contingent upon the time and manner in which the Purchaser receives payment from the owner.

6. CREDIT APPLICATION: Purchaser must complete a credit application if it wishes credit terms. The credit application must be updated periodically as requested and upon a request by Purchaser for a change in credit terms. The provision of credit is subject to acceptance by Duperon Corporation's Credit Department. If at any time the financial condition of the Purchaser gives Duperon Corporation, in its judgment, doubt concerning the Purchaser's ability to pay, Duperon Corporation may require full or partial payment in advance or may suspend any further deliveries or continuance of the work to be performed by Duperon Corporation until such payment has been received. Failure to pay after demand by Duperon Corporation shall result in a service charge of 1.5% per month, or the maximum permitted by law, whichever is less.

7. RETENTIONS: Retentions are not included, unless specifically noted. Purchaser agrees not retain payment or any part of a payment. Failure to make payment in accordance with the agreed upon terms will result in a 1.5% per month service charge.

8. ESCALATION: If shipment is, for any reason, deferred by the Purchaser beyond the contractually agreed upon normal shipment date, or if material price increases (or decreases) are greater than 5% from proposal date to material procurement date, stated prices set forth herein are subject to a shared risk escalation adjustment. Any escalation less than plus or minus 5% shall be absorbed by Duperon Corporation. All escalation (increase or credit) that exceeds 5% shall be passed onto the Purchaser at cost and shall be based upon increases (or decreases) in material costs to Duperon Corporation that occur in the time period between quotation and material procurement by Duperon Corporation. Purchaser agrees to this potential escalation (or credit) regardless of contradicting terms in the contract, except when an agreed upon escalation adder is included in the price.

(a) The total quoted revised price is based upon changes in the indices as published by third party sources, such as, the United States Department of Labor, Bureau of Labor Statistics. Labor will be related to the Average Hourly Earnings indices found in the Employment and Earnings publication. Material will be related to the Metal and Metal Products Indices published in Wholesale Prices and Price Indices.

(b) Price revision for items furnished to, and not manufactured by Duperon Corporation, which exceed the above escalation calculation, will be passed along by Duperon Corporation to Purchaser based upon the actual increase in price to Duperon Corporation for the period from the date of quotation to the date of material procurement. Any item that is so revised will be excluded from the index escalation calculations set forth in subparagraph (a) above.

9. APPROVAL: If approval of equipment submittals by Purchaser or others is required, a condition precedent to Duperon Corporation supplying any equipment shall be such complete approval.

10. INSTALLATION SUPERVISION: Unless specified, prices quoted for equipment do not include installation supervision. Duperon Corporation recommends and will, upon request, make available, at Duperon Corporation's then current rate, an experienced installation supervisor to act as the Purchaser's agent to supervise installation of the equipment. Purchaser shall at its sole expense furnish all necessary labor equipment, and materials needed for installation. Responsibility for proper operation of equipment, if not installed by Duperon Corporation or installed in accordance with Duperon Corporation's instructions, and inspected and accepted in writing by Duperon Corporation, rests entirely with Purchaser; and any work performed by Duperon Corporation personnel in making

Duperon Corporation Terms and Conditions

adjustment or changes must be paid by Purchaser at Duperon Corporation's then current per diem rates plus living and traveling expenses.

11. ACCEPTANCE OF PRODUCTS: Products will be deemed accepted without any claim by Purchaser unless written notice of non-acceptance is received by Duperon Corporation within 30 days of delivery if shipped F.O.B. point of shipment, or 48 hours of delivery if shipped F.O.B. point of destination. Such written notice shall not be considered received by Duperon Corporation unless it is accompanied by all freight bills for said shipment, with Purchaser's notations as to damages, shortages and conditions of equipment, containers, and seals. Non-accepted products are subject to the return policy stated below.

12. TAXES: Any federal, state, or local sales, use or other taxes applicable to this transaction, unless specifically included in the price, shall be the responsibility of Purchaser.

13. TITLE: The equipment specified herein, and any replacements or substitutes therefore shall, regardless of the manner in which affixed to or used in connection with realty, remain the sole and personal property of Duperon Corporation until the full purchase price has been paid. Purchaser agrees to do all things necessary to protect and maintain Duperon Corporation's title and interest in and to such equipment; and upon Purchaser's default, Duperon Corporation may retain as liquidated damages any and all partial payments made and shall be free to enter the premises where such equipment is located and remove the same as its property without prejudice to any further claims on account of damages or loss which Duperon Corporation may suffer from any cause.

14. INSURANCE: From date of shipment until the invoice is paid in full, Purchaser agrees to provide and maintain at its expense, but for Duperon Corporation's benefit, adequate insurance including, but not limited to, builders risk insurance on the equipment against any loss of any nature whatsoever. Purchaser shall provide proof of said coverage prior to shipment.

15. SHIPMENTS: Any estimated delivery dates represent Duperon Corporation's best estimate. No liability, direct or indirect, is assumed by Duperon Corporation for failure to ship or deliver on such dates. Duperon Corporation shall have the right to make partial shipments; and invoices covering the same shall be due and payable by Purchaser in accordance with the payment terms thereof. If Purchaser defaults in any payment when due hereunder, Duperon Corporation may, without incurring any liability therefore to Purchaser or Purchaser's customers, declare all payments immediately due and payable with maximum legal interest thereon from due date of said payment, and at its option, stop all further work and shipments until all past due payments have been made, and/or require that any further deliveries be paid for prior to shipment. If Purchaser requests postponements of shipments, the purchase price shall be due and payable upon notice from Duperon Corporation that the equipment is ready for shipment; and thereafter any storage or other charge Duperon Corporation incurs on account of the equipment shall be added to Purchaser's account. If delivery is specified at a point other than Duperon Corporation or its supplier's shipping points, and delivery is postponed or prevented by strike, accident, embargo, or other cause beyond Duperon Corporation's reasonable control and occurring at a location other than Duperon Corporation may store the equipment at Purchaser's expense. For all purposes of this agreement such tender of delivery or storage shall constitute delivery.

16. WARRANTY: DUPERON CORPORATION WARRANTS EQUIPMENT IT SUPPLIES ONLY IN ACCORDANCE WITH THE WARRANTY EXPRESSED IN THE ATTACHED COPY OF "DUPERON WARRANTY" AGAINST DEFECTS IN WORKMANSHIP AND MATERIALS WHICH IS MADE A PART HEREOF. SUCH WARRANTY IN LIEU OF ALL OTHER WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WHETHER WRITTEN, ORAL, EXPRESSED, IMPLIED OR STATUTORY, DUPERON CORPORATION SHALL NOT BE LIABLE ANY CONTINGENT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES FOR ANY REASON WHATSOEVER. THE PARTIES AGREE AND STIPULATE THAT AN EXPRESS WARRANTY PROVIDED TO PURCHASER IN WRITING IS THE SOLE WARRANTY REGARDING THE PRODUCT AND ANY SERVICE PROVIDED BY DUPERON CORPORATION. THE PARTIES SPECIFICALLY AGREE AND STIPULATE THAT THERE IS NO OTHER WARRANTY OF ANY TYPE WHATSOEVER, INCLUDING BUT NOT LIMITED TO CONSUMER WARRANTIES, WARRANTY OF FITNESS FOR PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, AND DUPERON CORPORATION. STIPULATE THAT THERE IS NO OTHER WARRANTY OF ANY TYPE WHATSOEVER, INCLUDING BUT NOT LIMITED TO CONSUMER WARRANTIES, WARRANTY OF FITNESS FOR PARTICULAR PURPOSE, WARRANTY OF MERCHANTABILITY, AND DUPERON CORPORATION IS NOT LIABLE FOR ANY SPECIAL, CONSEQUENTIAL, OR ANY OTHER DAMAGES, EXCEPT AS SET FORTH IN THESE TERMS AND THE EXPRESS WARRANTY. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE FACE OF THE EXPRESS WARRANTY.

17. PATENTS: Duperon Corporation agrees that it will, at its own expense, defend all suits or proceedings instituted against Purchaser and pay any award of damages assessed against it in such suits or proceedings, so far as the same are based on any claim that the said equipment or any part thereof constitutes an infringement of any apparatus patent of the United States issued at the date of this Agreement provided Duperon Corporation is given prompt notice in writing of the institution or threatened institution of any suit or proceeding and is given full control of the defense, settlement, or compromise of any such action; and Purchaser agrees to give Duperon Corporation needed information, assistance, and authority to enable Duperon Corporation so to do. In the event said equipment is held or conceded to infringe such a patent, Duperon Corporation shall have the right at its sole option and expense to a) modify the equipment to be non-infringing, b) obtain for Purchaser the license to continue using said equipment, or c) accept return of the equipment and refund to the Purchaser the purchase price thereof less a reasonable charge for the use thereof. Duperon Corporation will reimburse Purchaser for actual out-of-pocket expenses, exclusive of legal fees, incurred in preparing such information and rendering such assistance at Duperon Corporation's request. The foregoing states the entire liability of Duperon Corporation, with respect to patent infringement; and except as otherwise agreed to in writing, Duperon Corporation assumes no responsibility for process patent infringement.

18. CANCELLATION, SUSPENSION, OR DELAY: After acceptance by Duperon Corporation, the proposal, or Purchaser's order based on the proposal, shall be a firm agreement and is not subject to cancellation, suspension, or delay except upon payment by Purchaser of appropriate charges which shall include all costs incurred by Duperon Corporation to date of cancellation, suspension,

Duperon Corporation Terms and Conditions

or delay plus a reasonable profit. Additionally, all charges related to storage and/or resumption of work, at Duperon Corporation's plant or elsewhere, shall be added to Purchaser's sole account; and all risks incidental to storage shall be assumed by Purchaser.

19. DUPERON CORPORATION CANCELLATION: Duperon Corporation shall have the right to cancel any order or proposal without notice to Purchaser in the event that Purchaser becomes insolvent, adjudicated bankrupt, petitions for or consents to any relief under any bankruptcy reorganization statute, or becomes unable to meet its financial obligations in the normal course of business.

20. RETURN OF PRODUCTS: No products may be returned to Duperon Corporation without Duperon Corporation's prior written permission. Said permission may be withheld by Duperon Corporation at its sole discretion.

21. EXTENDED STORAGE: Extended storage instructions will be part of the information provided at shipment. If equipment installation and start-up is delayed more than 30 days, the provisions of the storage instructions must be followed to keep WARRANTY in force.

22. BACKCHARGES: Duperon Corporation will not approve or accept back charges for labor, materials, or other costs incurred by Purchaser or others in modification, adjustment, service, or repair of Duperon Corporation furnished materials unless such back charge has been authorized in advance in writing by a Duperon Corporation employee, by a Duperon Corporation purchase order, or work requisition signed by Duperon Corporation

23. INDEMNIFICATION AND HOLD HARMLESS: Duperon Corporation and Purchaser agree to hold harmless the other party from any and all liabilities, damages, losses, claims, demands, payments, actions, fees, or judgments arising out of or resulting from injury to or death of any and all persons or from damage to or loss of property (or loss of use thereof) arising out of the sale, use, maintenance, and/or delivery of equipment provided such liabilities, damages, losses, claims, demands, payments, actions, fees, or judgments are caused by actual, or claimed, negligence or breach of warranty and do not arise from any warranty not approved or from any sales for a purpose not authorized. Purchaser agrees to indemnify Duperon Corporation from all costs incurred, including but not limited to court costs and reasonable attorney fees, from enforcing any provisions of this contract, including but not limited to breach of contract or costs incurred in collecting monies owed on this contract.

24. FORCE MAJURE: Neither party shall be considered in default hereunder or be liable for any failure to perform or delay in performing any provisions of this Agreement in the customary manner to the extent that such failure or delay shall be caused by any reason beyond its control, including an act of God; fire, explosions, hostilities or war (declared or undeclared, striking or work stoppage involving either party's employees or governmental restrictions, provided that the party declaring force majeure shall give notice to the other party promptly and in writing of the commencement of the condition, the nature, and the termination of the force majeure condition. The party whose performance has been interrupted by such circumstances shall use every reasonable means to resume full performance of these Terms as promptly as possible.

25. ASSIGNMENT: No assignment of any right or obligation under this Contract shall be made by either party without the prior consent of both parties. Any attempted assignment without such is void.

26. ENTIRE AGREEMENT: This proposal expresses the entire agreement between the parties hereto superseding any prior understandings, either written or oral, and is not subject to modification except by a writing signed by an authorized officer of each party.

27. ARBITRATION: Any controversy or claim arising out of or relating to the performance of any contract resulting from this proposal or contract issued, or the breach thereof, shall be settled by arbitration in accordance with the Arbitration Rules of the American Arbitration Association, and judgment upon the award rendered by the arbitrator(s) may be entered to any court having jurisdiction.

28. MISCELLANEOUS: Titles and/or headings in these Terms are inserted for convenience only and are not intended to effect the interpretation or construction of the Terms. Whenever possible, each provision of this Contract shall be interpreted in such a way as to be effective and valid under applicable law. If any provision is prohibited by or invalid under applicable law, it will be ineffective only to the extent of such prohibition or invalidity, without invalidating the remainder of such provision or the remaining provisions of the Terms. The parties agree that time is of the essence. Production and delivery dates may change upon any delay caused by Purchaser or its agents. Duperon Corporation may not be assessed damages for delays in shipment or delivery. Unless otherwise agreed in writing, the Terms contained herein and the subject of this agreement shall be governed by and construed only under the laws of the State of Michigan, USA. The parties agree to dismiss any claim brought before the courts of any other state or nation. The parties deem that this Agreement was executed and to be fully performed in Saginaw, Michigan.

Vol 4 Additional Information River Intake Pump Station

Part 3 – Geotechnical Information

willmerengineering.com

Technical Memorandum

To:	Joe W. Ussery, III, P.E. R2T, Inc.
From:	Joseph M. Sura, PE / Sujit K. Bhowmik, PhD, PE / James L. Willmer, PE
Date:	August 5, 2019
Subject:	Additional Borings and Rock Coring New River Pump Station and Associated Facilities Water Supply Program, City of Atlanta Department of Watershed Management (DWM) Fulton County, Georgia Willmer Project No. 71.4384

As requested, we have completed additional borings and rock coring for the new River Intake Pump Station (RIPS) and associated facilities, to be located near the Atlanta Water Works River Intake, north of the R.M. Clayton Water Reclamation Center (R.M. Clayton Plant) in Fulton County, Georgia (see Figure 1). These borings were performed to obtain additional information on rock depth and quality to be provided to bidders for this project. The work was performed in general accordance with Willmer Proposal 19.P139, dated April 10, 2019, and associated discussions with River 2 Tap, Inc. (R2T). This work is a follow-up to previous work performed for the RIPS, which was summarized in two memoranda titled "Geotechnical Exploration and Recommendations – New River Pump Station" dated April 23, 2018 and "Geotechnical Recommendations for Valve Vault" dated February 19, 2018. The results of our additional borings and rock coring are provided in this memorandum. This memorandum is not a stand-alone document; it should be read in conjunction with the two previous memoranda referenced above.

Boring Locations

As shown in Figures 2, 3, and 4 and on the drawings provided by R2T (Appendix V), the additional borings were performed in the following areas:

- New RIPS and associated facilities, constructed near the Atlanta Water Works River Intake
- Golf cart bridge to be constructed for access between the new RIPS and the existing R.M. Clayton Plant
- Underground water tunnel near the existing R.M. Clayton Plant.

Field Exploration Program

<u>Methodology</u>

A field exploration program was conducted by Willmer to assess the depth and quality of rock and depth to groundwater at the site. All field activities were performed during business hours and coordinated with site personnel.

Boring locations were selected by R2T and provided to Willmer. The boring locations were generally within a few feet of a previously drilled boring. The boring depths were selected by Willmer based on structural

drawings provided by R2T and generally extended a minimum of 2 to 5 feet below the lowest elevation required for construction. Borings were located in the field by Willmer personnel by referencing existing site features and using a hand-held GPS device. Subsurface utility clearance at the boring locations was provided by the subscribers of Georgia Utilities Protection Center and a private subsurface utility locating subcontractor. Upon completion of drilling, the boreholes were backfilled using soil cuttings from the drilling operation and where applicable, pavement was patched with cold-mix asphalt. Since the majority of the borings were drilled less than 10 feet of lateral distance from previous Willmer borings at the site, therefore, the ground surface elevations were assumed to be similar to the closest previous boring.

Standard Penetration Test Borings

The subsurface exploration consisted of drilling 12 Standard Penetration Test (SPT) borings to auger refusal, with NQ rock coring below auger refusal to the target elevation. As mentioned before, the borings were located near previously drilled borings; therefore, each boring had the same number as the nearest previously drilled boring, with a suffix "A" or "B". For example, boring SPT-1A is located approximately five feet from the previous boring designated SPT-1. The borings for this work were named SPT-1A to SPT-6A, SPT-10B, GC-1A and GC-2A, RMC-12A, RMC-12B, and RMC-15A. Borings SPT-1A to SPT-6A and SPT-10B are associated with the new RIPS construction. Borings GC-1A and GC-2A are associated with the golf cart bridge between the new RIPS and the existing R.M. Clayton Plant. Borings RMC-12A, RMC-12B, and RMC-15A are associated with a new tunnel construction. The locations of the borings are shown in Figures 2 through 4, boring logs are included in Appendix II.

The SPT borings were drilled using a track-mounted rotary drill rig to advance continuous hollow-stem augers to auger refusal. After reaching auger refusal, NQ-size rock coring was performed. Rock cores were generally advanced in either 5-foot or 10-foot runs. All work was performed under the observation of our geotechnical engineer. The SPT boring and rock coring procedures are described in Appendix I.

Classification of the soil samples collected was performed in general accordance with ASTM D 2487 and D 2488 procedures. Detailed descriptions of the materials encountered in each soil test boring, along with graphic representations of the standard penetration test blow counts (N-values), are presented on the boring logs included in Appendix II.

Rock Coring

The depth of rock coring, percent recovery (REC) of rock core and the Rock Quality Designation (RQD) are presented on the boring logs in Appendix II. Photographs of the recovered rock cores are included in Appendix III. Percent recovery is defined as the length of rock core recovered divided by the total length of the core run. RQD is defined as the sum of the lengths of intact rock core pieces 4 inches or longer (ignoring mechanical breaks) divided by the total length of the core run. Percent REC and RQD provide an indication of the continuity, fracturing, and degree of weathering of the rock.

Soil Sampling

In the SPT borings, soil samples (split-spoon) were obtained at 2.5-foot intervals within the top 10 feet and at 5-foot intervals thereafter to auger refusal depths. Soil samples were classified by our geotechnical engineer. The split-spoon samples obtained from all borings were sealed in glass jars for further classification and laboratory testing, as needed.

Piezometer Installation

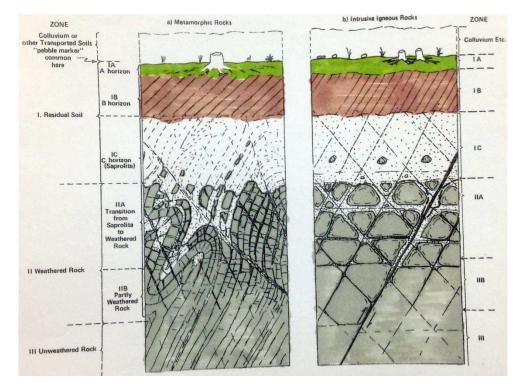
At the request of Stantec, 2-inch diameter piezometers RMC-12PZ and RMC-15PZ were installed near boring RMC-12A and RMC-15A, respectively. These piezometers were installed by drilling to approximately 1-2 feet above the auger refusal depth, as estimated from the adjacent boring. Slotted 5-foot well screens were installed from the termination depth. Sand filter pack was used from the base of the well to a depth of approximately 10 feet below ground surface. Bentonite chips were used as a well plug between the top of the sand filter pack and the top of the borehole. A 2 ft by 2 ft rectangular concrete well pad was installed at the surface, and a flush-cut steel well cap was used at the surface.

Groundwater Level Measurement

Due to the use of water as part of the rock coring process, groundwater at the time of boring completion may not be representative of the groundwater table elevation. Based on the field engineer's assessment, the groundwater elevations recorded at the time of boring in three borings (SPT-1A, RMC-12B, and RMC-15A) were considered to be representative. Groundwater at the time of boring completion was not measured for the remaining borings since the groundwater level was elevated due to the water pumping during rock coring. Groundwater readings were attempted at each borehole approximately 24 hours after boring completion. However, in several borings, based on the field engineer's judgment, the groundwater level at 24 hours after boring completion was still elevated due to water pumped into the hole during rock coring and did not appear representative of the actual groundwater elevation.

Area Geology and Subsurface Conditions

Area Geology


Based on the USGS Database for the 'Geologic Units of Georgia', the project site is underlain by Porphyritic Granite, located within the Southern Piedmont Physiographic Province of Georgia. The Porphyritic Granite formation is comprised of granite. Based on rock cores recovered during drilling, the rock type underlying the site consists of biotite gneiss, granitic gneiss, and granite.

The Piedmont is composed of metamorphic rocks with localized igneous intrusions. The residual overburden soils encountered in the Piedmont are the product of in-situ chemical and physical weathering of the underlying parent rock. Typically, weathering is most advanced near the surface and decreases with depth. Below the residual soils, partially weathered rock is usually encountered as a transition zone to the underlying bedrock. Partially weathered rock (PWR) is locally defined as a material with a Standard Penetration Resistance in excess of 50 blows per 6 inches of penetration.

An important aspect of the Piedmont subsurface profile is that highly variable conditions may exist over relatively short horizontal distances. This is caused by variation in mineral composition of the parent rock and the intensity of fractures and joints within the rock. Zones of partially weathered rock may be encountered within residual soils, and lenses of soil may occur in the rock mass. The subsurface profile may be altered by excavating or filling, or by effects of water through the process of erosion or alluvial deposition. Typical profiles of metamorphic and intrusive igneous rocks are provided below.

Additional Boring and Rock Coring New River Pump Station and Associated Facilities Water Supply Program, City of Atlanta DWM Atlanta, Fulton County, Georgia Willmer Project No. 71.4384

Subsurface Conditions

The subsurface profile encountered at the boring locations generally consisted of a layer of topsoil underlain by fill (at some locations), residual and/or alluvial soils, partially weathered rock (PWR), and parent bedrock. PWR was encountered at all borings with the exception of GC-1A and RMC-12B.

The fill consisted of loose to dense silty sand and very loose to medium dense clayey sand. The fill also randomly contained root materials, boulders, or rock fragments. The residual soils mostly consisted of soft to very stiff sandy silts and sandy clays and loose to dense silty and clayey sands. The PWR consisted mostly of very hard sandy silt and very dense silty/clayey sand with rock fragments at some boring locations.

The parent bedrock consisted of soft to hard biotite gneiss, granitic gneiss, or granite. The core recoveries (REC) generally ranged from 80 to 100 percent. The rock quality designation (RQD) values ranged from 15 to 100 percent, generally increasing with the core depth.

PWR was encountered at depths ranging from less than one foot to 41 ft bgs. Auger refusal was encountered at depths ranging from 9.5 to 41 ft bgs. The boring logs are included in Appendix II, rock core photographs are included in Appendix III.

Laboratory Testing

General

A laboratory testing program was performed by Willmer to determine the engineering properties of rocks for use by Stantec in design of for the proposed tunnel. Based on discussions with R2T and Stantec, the laboratory testing program consisted of (i) rock compressive strength and bulk density tests on three samples from each of the three borings RMC-12A, RMC-12B, and RMC-15A and (ii) three axial point load strength tests on

samples from RMC-12B and RMC-15A. All laboratory tests were performed in general accordance with appropriate ASTM standards.

Rock Compressive Strength and Bulk Density of Rock

Rock core samples obtained from borings RMC-12A, RMC-12B, and RMC-15A were used for compressive strength testing. The compressive strengths varied between 15,413 to 23,981 psi in RMC-12A, 13,536 to 24,980 psi in RMC-12B, and 8,621 to 16,772 psi in RMC-15A. The bulk density values varied between 163 to 174 pcf in the three borings.

Axial Point Load Tests

Axial point load tests were conducted on rock core samples from borings RMC-12B and RMC-15A. In boring RMC-12B, the compressive strength varied between 16,300 and 29,900 psi. In boring RMC-15A, the compressive strength varied between 21,800 and 31,900 psi.

Closing Remarks

Willmer appreciates the opportunity to assist you during this phase of the project. Please contact us if you have any questions concerning this report or require further assistance.

Sincerely,

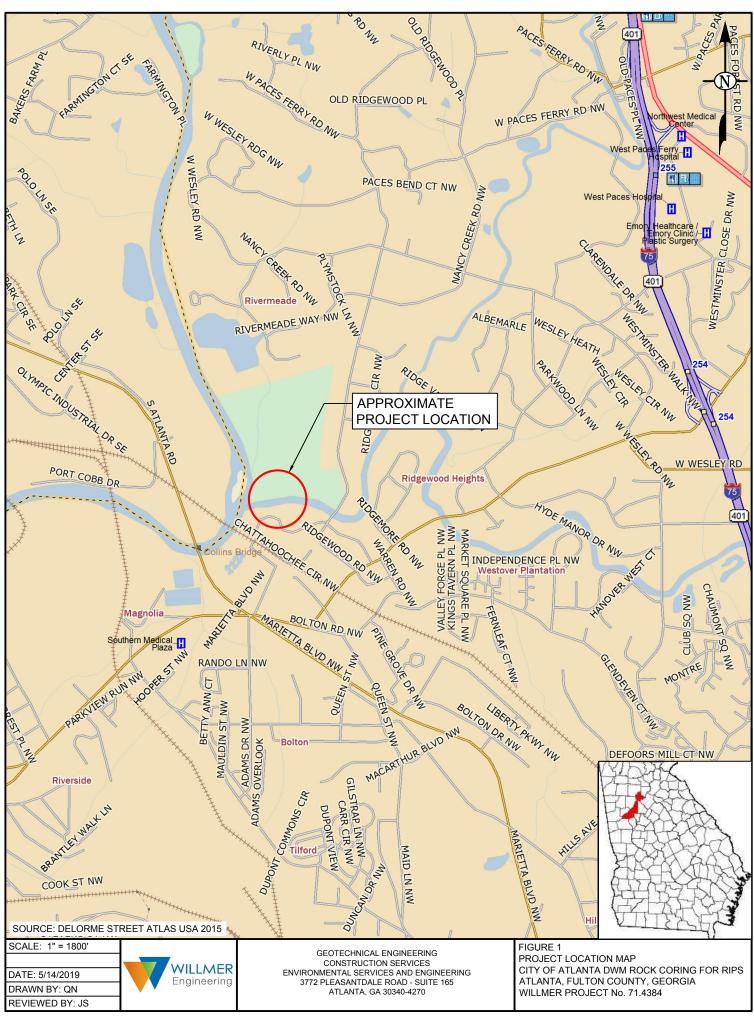
WILLMER ENGINEERING INC.

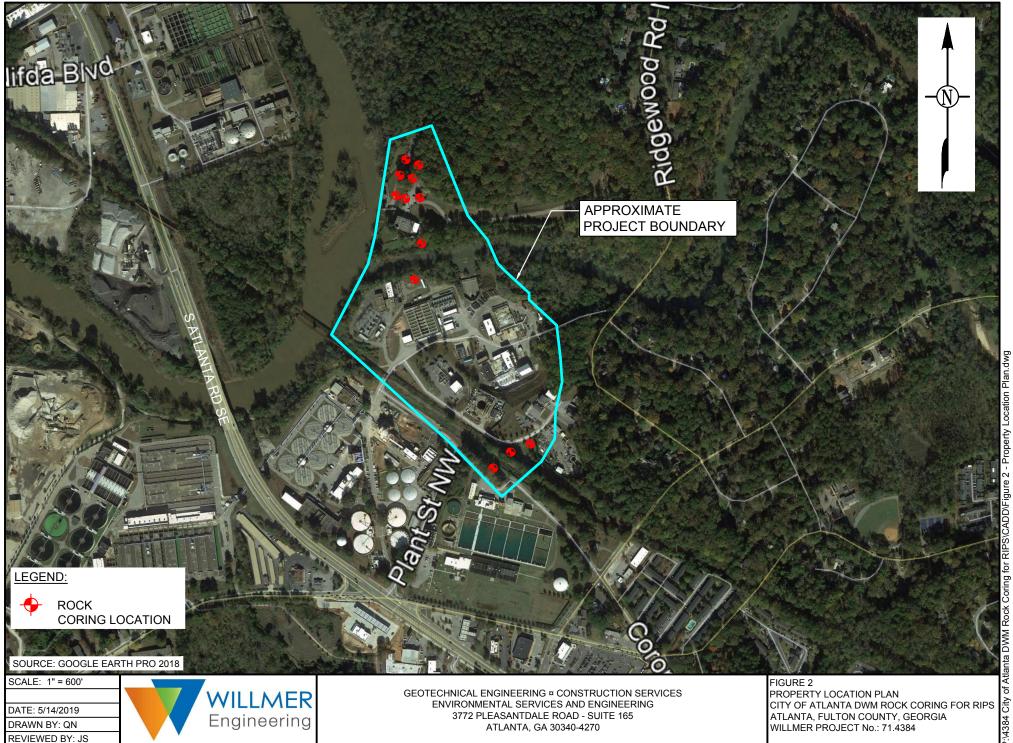
bsep/Meta

Joseph M. Sura, PE Project Engineer

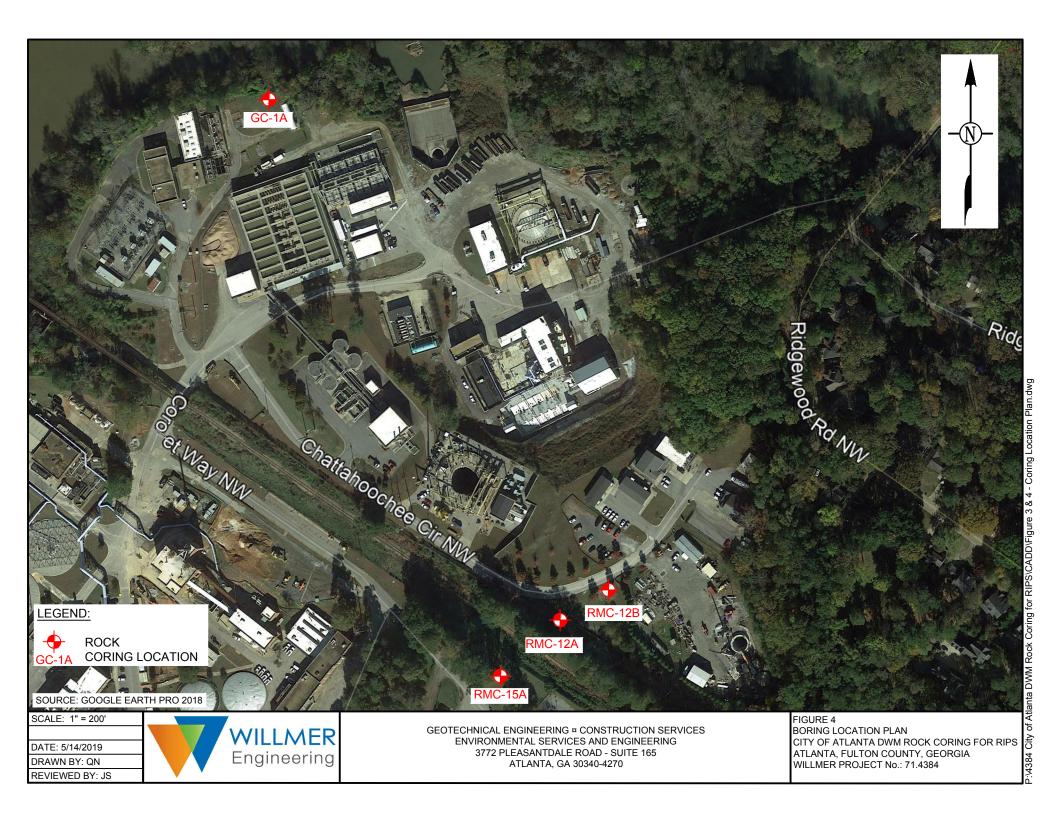
Ulllun . P.E.

James L. Willmer, PE Executive Vice President/Principal Consultant


Attachments:


- Figure 1 Project Location Map
- Figure 2 Property Location Plan
- Figure 3 Boring Location Plan
- Figure 4 Boring Location Plan
- Appendix I Drilling and SPT Procedures
- Appendix II USCS Reference, Boring Record Legend, Boring Logs
- Appendix III Rock Core Photographs
- Appendix IV Laboratory Test Results
- Appendix V Drawings from R2T showing Boring Locations
- Appendix VI Important Information about this Geotechnical Report

Swit & Bhowmill


Sujit K. Bhowmik, PhD, PE Chief Engineer

FIGURES

APPENDIX I

DRILLING AND SPT PROCEDURES

The borings were drilled using an all-terrain vehicle (ATV)-mounted rotary drill rig to advance continuous hollow-stem augers. All work was performed under the observation of our geotechnical engineer. The SPT borings were performed in general accordance with ASTM Standard D 1586. The Standard Penetration Test is a widely accepted method for in situ testing of soils. A 2-foot long, 2-inch outside-diameter split-barrel sampler attached to the end of a string of drilling rods is driven 18 inches into the ground by successive blows of a 140-pound hammer freely dropping 30 inches. The number of blows needed for each 6 inches of penetration is recorded. The blows required for the first 6 inches of penetration are allowed for seating the sampler into any loose cuttings, and the sum of the blows required for penetration of the second and third 6-inch increments constitutes the penetration resistance or N-value. After the test, the sampler is extracted from the ground and opened to allow visual examination and classification of the retained soil sample. The N-value has been empirically correlated with various soil properties including consistency, relative density, strength, compressibility, and potential for difficult excavation. Correlations between the N-value and the relative density of cohesionless soils (sands) and consistency of cohesive soils (clays/silts) are included in Appendix II.

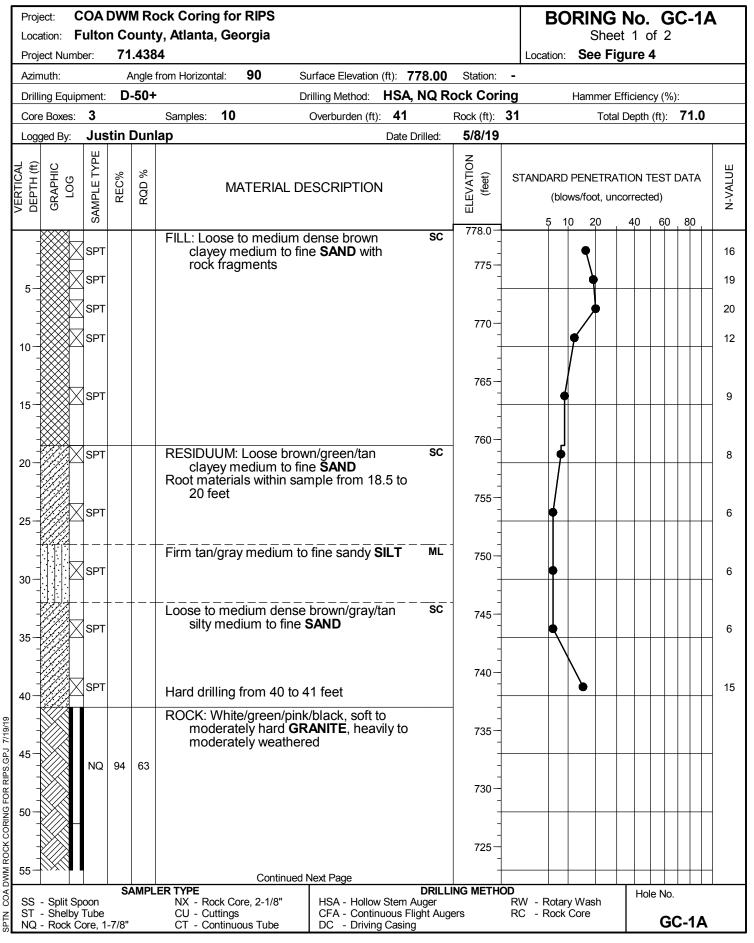
APPENDIX II

BORING RECORD LEGEND

SM, CL, etc: - GROUP SYMBOL based on Unified Soil Classification System. (Refer to ASTM D-2488 and Table 1 of D-2487)

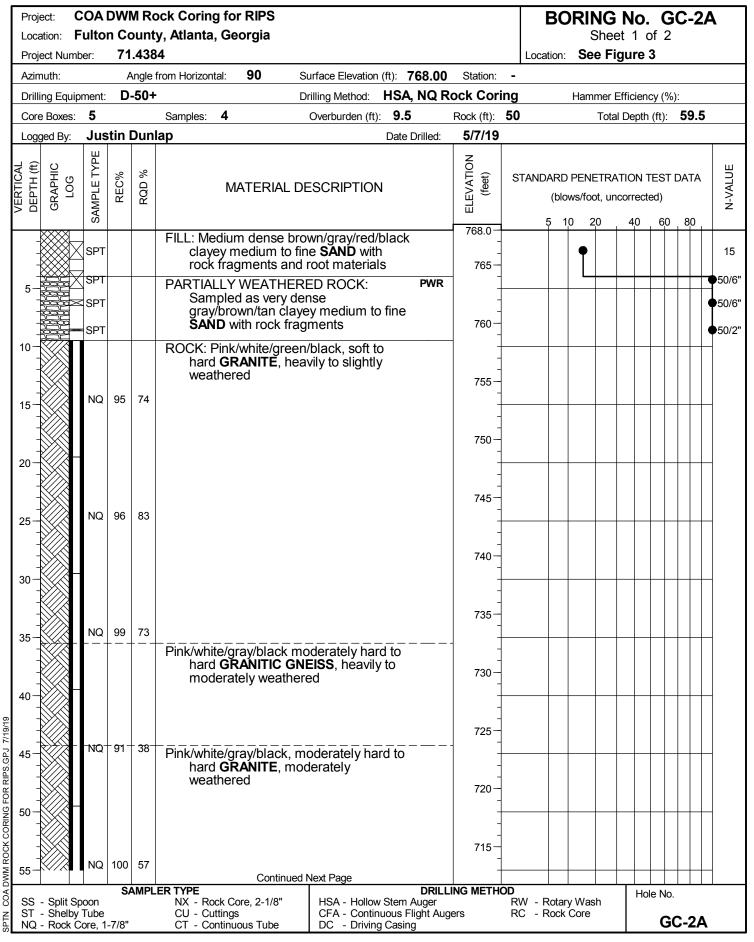
N-VALUE: BLOWS PER FOOT- Standard Penetration Resistance (SPT) blow count, the sum of the second and third 6-inch increments of the SPT test. (Refer to ASTM D-1586)

CONSISTENCY / RELATIVE DENSITY Correlated with SPT Blow Count, N:

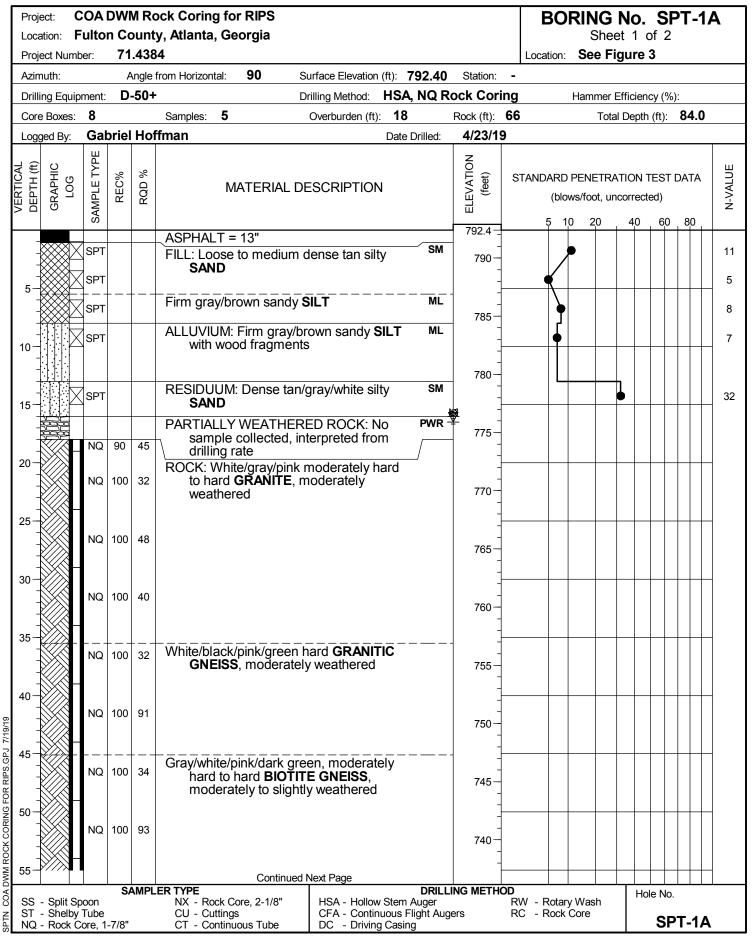

	<u>SILTS A</u>	ND CLAYS				
<u>(blov</u>	N <u>vs per foot)</u> 0 - 2	<u>Consistency</u> Very Soft		N (blows per foot) 0 - 4	<u>Relative</u> <u>Density</u> Very Loose	
	3 - 4	Soft		5 - 10	Loose	
	5 - 8	Firm		11 - 30	Medium De	ense
	9 - 15	Stiff		31 - 50	Dense	
	16 - 30	Very Stiff		> 50	Very Dense	9
	31 - 50	Hard				
	> 50	Very Hard				
<u>NOTE</u> Grour	<u>S:</u> Idwater Mea	surements: 👤	Water I	evel at time of ba	ckfilling	
		\bigtriangledown	Water I	evel at time of bo	ring	
		题	Caved	level at 24 hours		
ASPHALT	CONCRE	TE TOPSOIL 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	FILL	GW	GP	GM
GC	SW	SP	SM	SC	SANDY SILT	SANDY CLAY
ML		CL-ML	CL	CH	OL	OH
PEAT	PWR	ROCK				

UNIFIED SOIL CLASSIFICATION SYSTEM REFERENCE SHEET

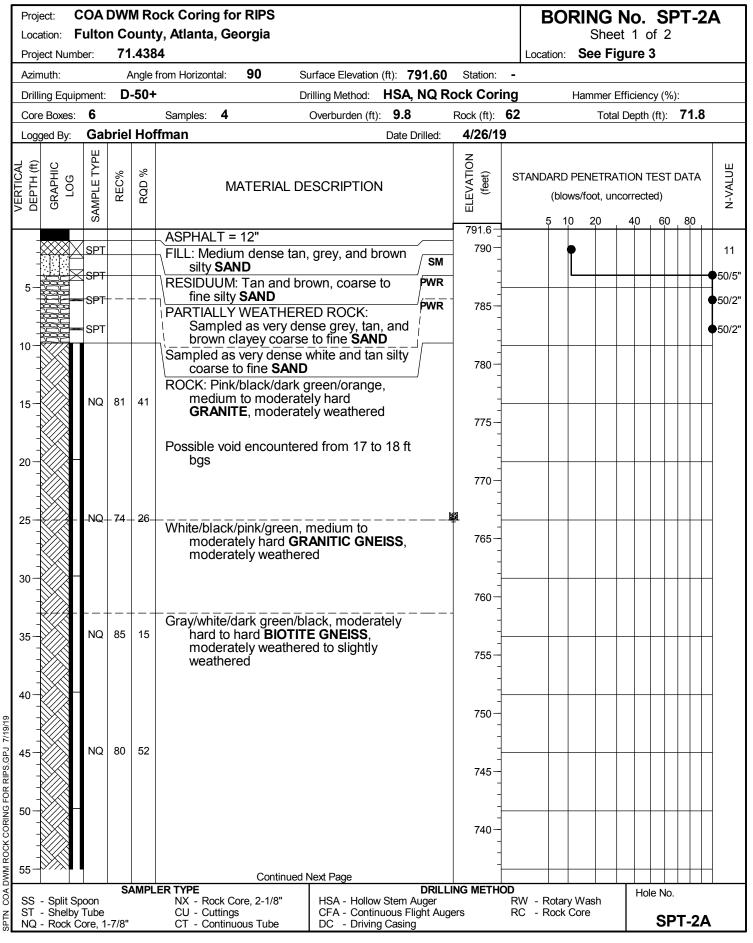
I	MAJOR DIVISIONS		LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL CLEAN AND GRAVELS		(GW)	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	LITTLE OR NO FINES	(GP)	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES	(GM)	SILTY GRAVELS and GRAVEL-SAND-SILT MIXTURES
SOILS	RETAINED #4 SIEVE	APPRECIABLE AMOUNT OF FINES	(GC)	CLAYEY GRAVELS and GRAVEL-SAND-CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND	CLEAN SAND	(SW)	WELL GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN #200 SIEVE SIZE	AND SANDY SOILS	LITTLE OR NO FINES	(SP)	POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES	(SM)	SILTY SANDS and SAND-SILT MIXTURES
	<u>PASSING</u> #4 SIEVE	APPRECIABLE AMOUNT OF FINES	(SC)	CLAYEY SANDS and SAND-CLAY MIXTURES
	SILT	S	(ML)	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR VERY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS		(S	(CL)	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
SOILS	LIQUID I <u>LESS</u> TH		(OL)	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF	SILTS		(MH)	INORGANIC ELASTIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SANDY OR SILTY SOILS
MATERIAL IS <u>SMALLER</u> THAN #200 SIEVE SIZE	ANI CLA` LIQUID	YS	(CH)	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
	GREATER		(OH)	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HIGH	ILY ORGANIC SO	ILS	(PT)	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS



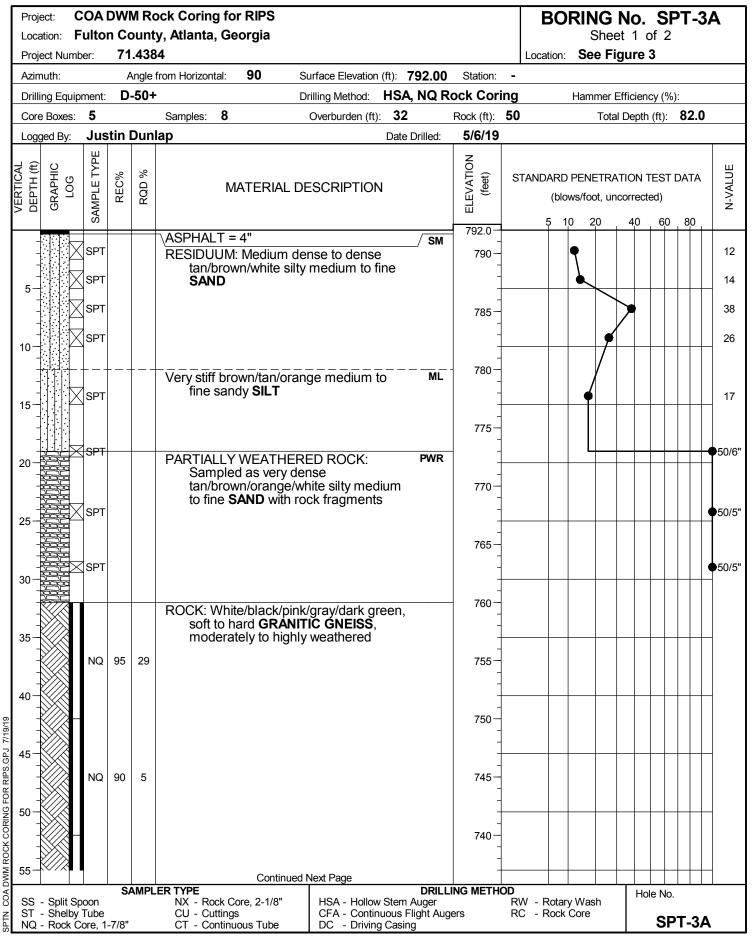
Project: COA DWM Rock Coring for RIPS						B	ORI					Α		
	Location:Fulton County, Atlanta, GeorgiaSheet 2 of 2Project Number:71.4384Location:See Figure 4													
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION	ELEVATION (feet)	STANDARD PENETRATION TEST DATA (blows/foot, uncorrected) 5 10 20 40 60 80							N-VALUE
		NQ	93	58	White/green/pink/black, moderately hard to hard GRANITE , moderately weathered to fresh	720-								
- - - - - - - -		NQ	63	49	Soil/PWR seam encountered from 61.5 to 64 feet	715								
70					Auger refusal encountered at 41 ft bgs. Rock coring terminated at 71 ft bgs.	705-								
75					Groundwater was not measured at the time of boring completion.	700								
- 80 - -						- - - - 695								
85— - -						- - - - 690								
- 90 -														
- 95 - -						685								
- - 100- -						680								
61/01/1 105						675						$\left \right $		
						670						$\left \right $		
						665 - - - -								
z ST	- Split Sp - Shelby - Rock C	Tube		AMPL	ER TYPE DRILLI NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Aug CT - Continuous Tube DC - Driving Casing	ING METHO) RW - Rot RC - Roc	ary Was ck Core	sh	Ho	le No. G	C-1/	<u> </u>	

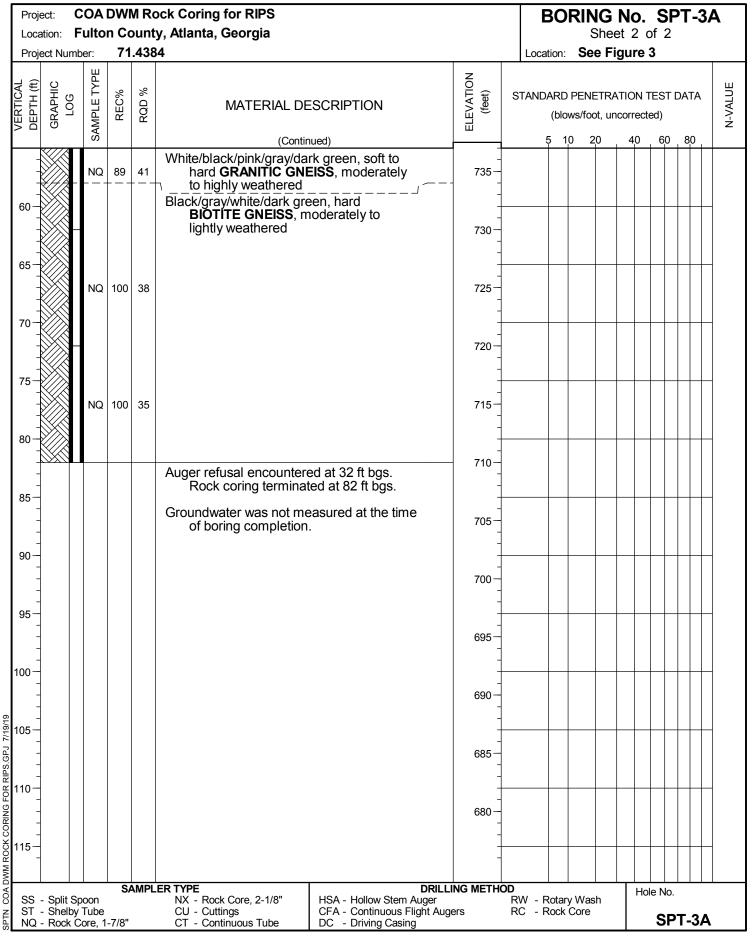


Proje	Project: COA DWM Rock Coring for RIPS BORING No. GC-2A Location: Fulton County, Atlanta, Georgia Sheet 2 of 2 Design to the second													
Loca	tion:	Fulto	on Co	ount	y, Atlanta, Georgia									
Proje	ect Num	nber:	71	.438	4		Location: See F	igure 3						
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION (Continued)	ELEVATION (feet)	STANDARD PENETR/ (blows/foot, ur 5 10 20	AL A						
					Pink/orange/black/white, moderately hard to hard GRANITE , moderately weathered	710								
60					Auger refusal encountered at 9.5 ft bgs. Rock coring terminated at 59.5 ft bgs.									
- 65					Groundwater was not measured at the time of boring completion.	705-								
- - - 70-						700-								
-						- - 695								
75						690 -								
- 80 -														
- - 85						685								
- - 90						680-								
						- - 675 -								
95						670-								
100						665-								
61/61/2 rds														
9.541 110 - 110 -						660-								
						655-								
			S.	AMPL	ER TYPE DRILL			Hole No.						
SS ST S	- Split S - Shelb - Rock	y Tube	•		NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Aug CT - Continuous Tube DC - Driving Casing		RW - Rotary Wash RC - Rock Core	GC-2A						

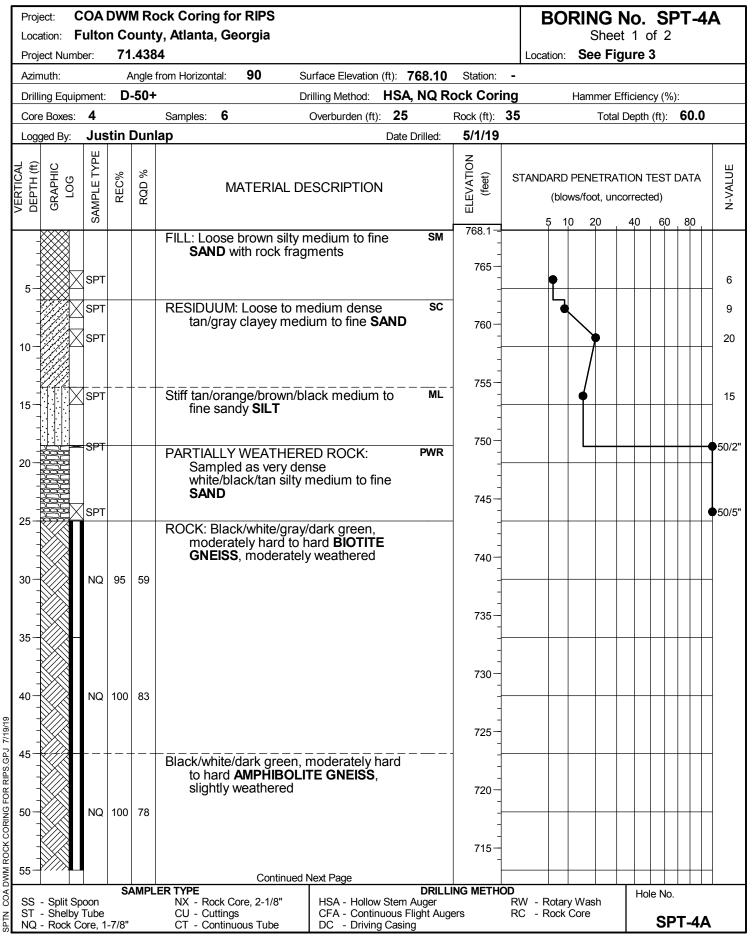


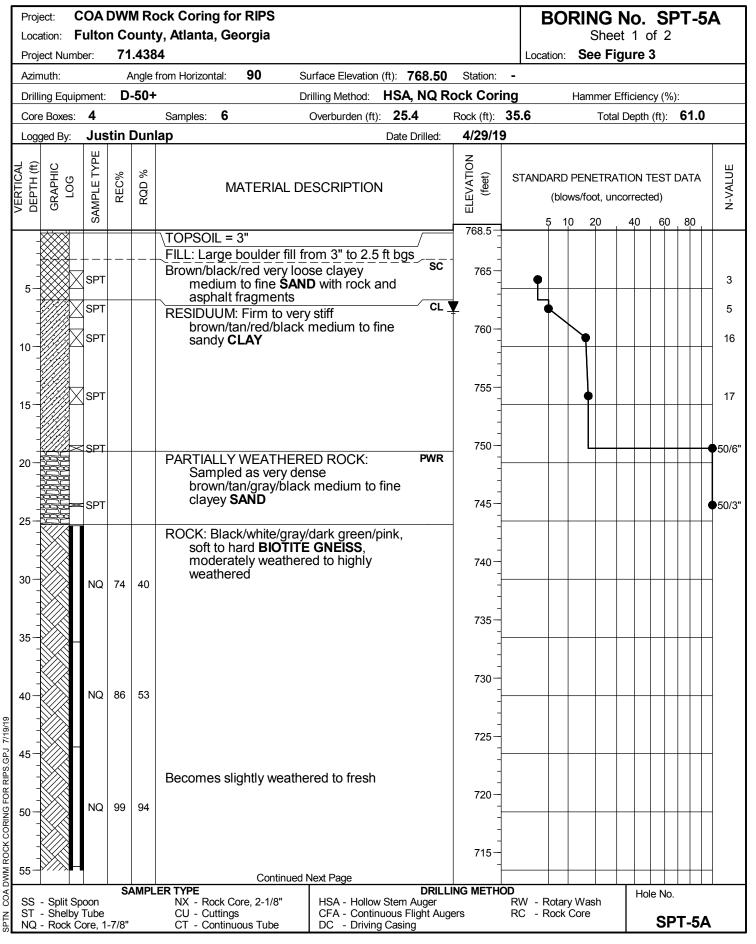
Location: Fulton County, Atlanta, Georgia Project Number: 71.4384 Location Location											BORING No. SPT-1/ Sheet 2 of 2 Location: See Figure 3							
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION	ELEVATION (feet)	s		blows/f	oot, u	ncorr	ecte	d)		x			
		0)			(Continued)	-	<u> </u>	5	10	20	4	0	60	80				
60	-	NQ	100	88	Gray/white/pink/dark green, moderately hard to hard BIOTITE GNEISS , slightly weathered to fresh	735	-											
	-	NQ	100	65		730-	-											
	-	NQ	100	100		- 725 -	-											
		NQ	100	100		- - 720 -	-											
		NQ 100 92 NQ 100 100	715	-														
30 - 1 - 1 - 1 - 30 				710-														
35 — - - - - - - - - -					Auger refusal encountered at 18 ft bgs. Rock coring terminated at 84 ft bgs.Groundwater was encountered at 16 ft bgs at the time of boring prior to rock coring. Boring caved to 16.5 ft bgs after	- - 705 - -	-											
- - - - 95-					coring. Boring caved to 16.5 ft bgs after completion of rock coring.	700-												
- - - - 00-						- 695 - -	-											
- - - - 05-						- 690 — - -												
- - - 10-						- 685 - -	-											
10 - - - 15-						- 680 - -												
-	0.5111.0		Sł	AMPL	ER TYPE DRILL	LING METH						Hole	e No.					
ST -	Split Sp Shelby Rock C	Tube	-7/8"		NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Aug CT - Continuous Tube DC - Driving Casing	gers	R	W - Ro C - Ro	tary W ck Cor				SP	T-1	A			



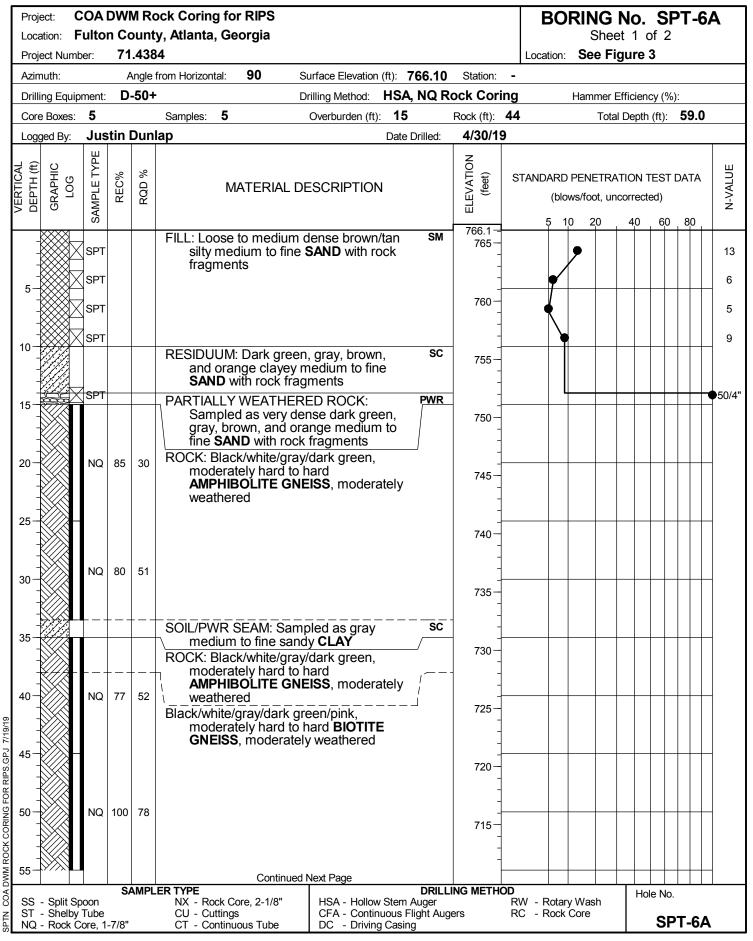


		ulto	n Co		ock Coring for RIPS y, Atlanta, Georgia 4			B (Locatio		She	et 2	of of		1-2	:A
DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION	ELEVATION (feet)	ST		olows/fo	oot, ur	ncorre	ected)		
		NQ	100	100	(Continued)			5	10	20	4() 	60	80	
60	_				Gray/white/dark green/black, moderately hard to hard BIOTITE GNEISS , moderately weathered to slightly weathered	735— - - 730—									
		NQ	100	76		- - - 725 - - -									
70					No sample recovery from 70.8 to 71.8 ft bgs. Auger refusal encountered at 9.8 ft bgs.	- 720 - -									
75 - - -					Auger refusal encountered at 9.8 ft bgs. Rock coring terminated at 71.8 ft bgs after repeated attempts to continue were unsuccessful due to core barrel seizing up mechanically.	- - 715 - -									
08 - - -					Groundwater was not measured at the time of boring completion. Boring caved to 25 ft bgs at 24 hours after boring completion.	 710 - -									
85 - - -						- 705 — - -									
00 - - - -						700									
95 - - -						695 - - -									
00 - - - -						690 - - -									
05 - - -						685 - - -									
10 - - -						- - 680 - - -									
15—						 675—									
ST -	Split Sp Shelby Rock C	Tube		AMPL	ER TYPE DRILLI NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Auge CT - Continuous Tube DC - Driving Casing	NG METHC		/ - Rot - Rot	ary Wa ck Core			Hole		Г-2/	Δ

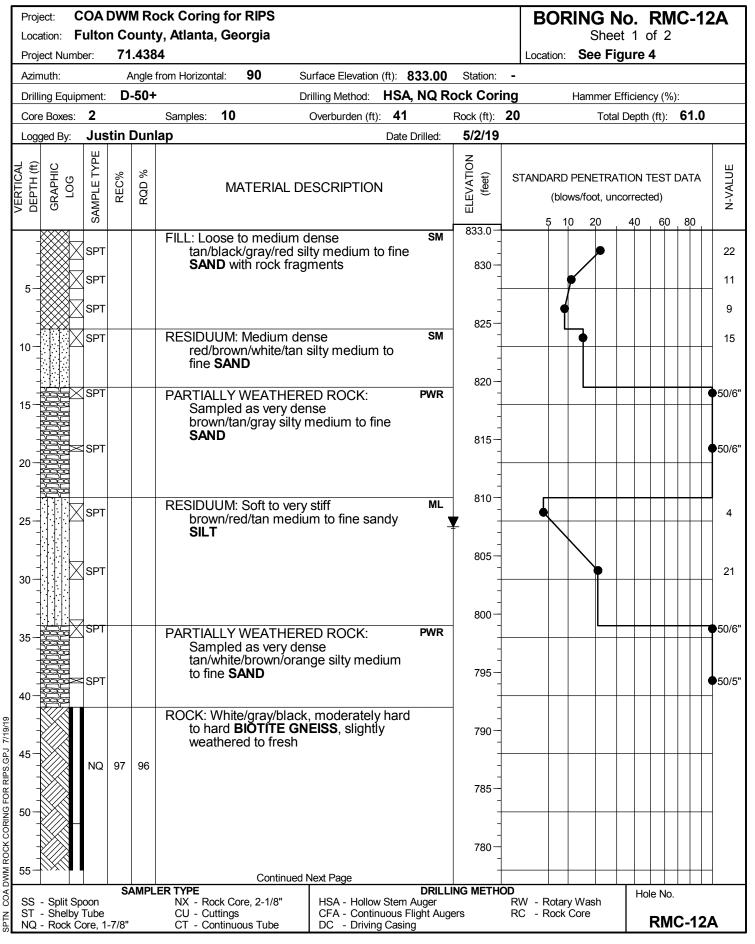




	Project:COA DWM Rock Coring for RIPSBORING No. SPT-4ALocation:Fulton County, Atlanta, GeorgiaSheet 2 of 2Project Number:71.4384Location: See Figure 3													Α
	ect Numb							Location:				Ζ		
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DES		ELEVATION (feet)		ws/foot, ι	Incorr	ected))		N-VALUE
-		NQ	93	58	(Continue Black/white/dark green, me to hard AMPHIBOLITE slightly weathered	,	- - 710-	5 1	0 20	4		50	80	
60					Auger refusal encountered Rock coring terminate	d at 25 ft bgs. d at 60 ft bgs.	705-							-
65-					Groundwater was not mea of boring completion.	/05-							-	
- - 70							700-							-
							695 - 							
-							- - 690							
80 — - -							 - - 685							-
85- -														-
- - 90							680 - - -							_
- - 95-							675-							-
							- - 670 -							
100 — - ه _							665							
2.GPJ 7/19/1							- - - 660 -							
- NG FOR RIPS														_
SPTN COA DWM ROCK CORING FOR RIPS.GPJ 7/19/19 N 102 N 128 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							655 - - -							-
A COADWM	- Split Sp	oon	SA	AMPL	ER TYPE NX - Rock Core, 2-1/8" CU - Cuttings	DRILLII HSA - Hollow Stem Auger CFA - Continuous Flight Auge	NG METHOD	RW - Rotar RC - Rock	y Wash		Hole I			
ŊQ	ST - Shelby Tube CU - Cuttings CFA - Continuous Flight Augers RC - Rock Core NQ - Rock Core, 1-7/8" CT - Continuous Tube DC - Driving Casing SPT-4A													

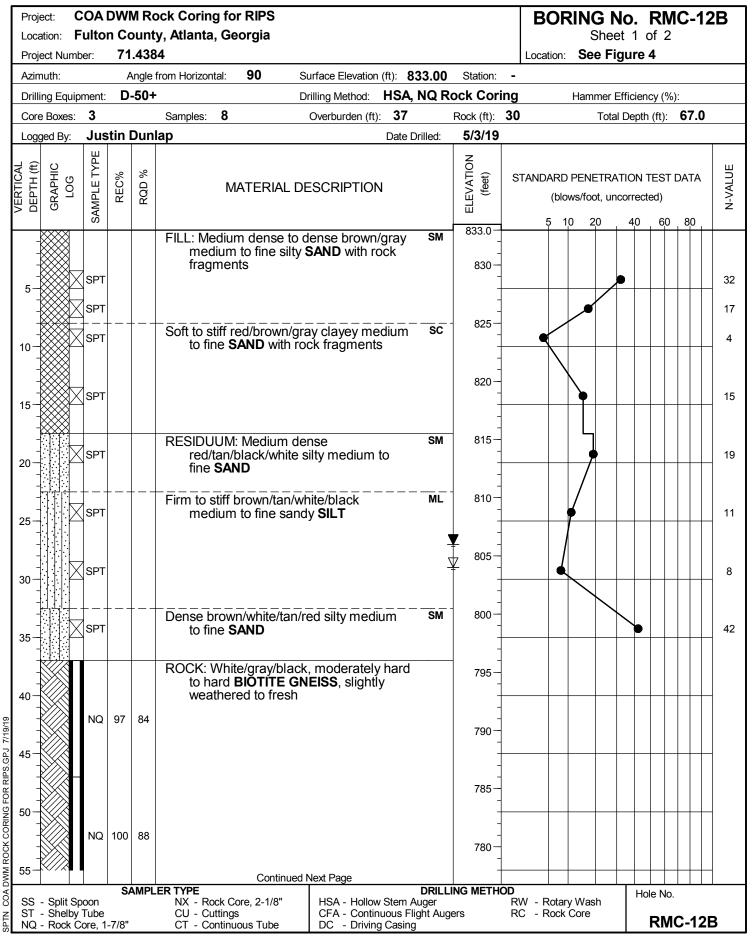


Proj					ock Coring for RIPS		BC	DRIN				Υ -	5A	
					y, Atlanta, Georgia				Sheet					
Proj	ect Numb	er:	71	.438	4		Location	n: Se	e Fig	ure 3	3			
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION (Continued)	ELEVATION (feet)	STANDAR (b 5	DATA 80		N-VALUE				
		NQ	100	99	Black/white/gray/dark green/pink, hard BIOTITE GNEISS, fresh	710-								
-					Auger refusal encountered at 25.4 ft bgs. Rock coring terminated at 61 ft bgs.	705-								
65					Groundwater was encountered at 7 ft bgs at 24 hours after boring completion.									
- - 70						700-								
-						695								
75												$\left \right $	$\left \right $	
						690								
-						685-								
85— - -														
- 90						680-								
-						675								
95														
- 100						670						\square		
- - - 105-						665 -								
						660-								
110-														
105						655								
			S		ER TYPE DRILL					Hol				
SS ST	- Split Sp - Shelby	Tube			NX - Rock Core, 2-1/8" CU - Cuttings HSA - Hollow Stem Auger CFA - Continuous Flight Aug		RW - Rota RC - Roc	ary Was k Core	h		e No.)т <i>г</i>	^	
, NQ	- Rock C	ore, 1	-7/8"		CT - Continuous Tube DC - Driving Casing						37	°T-5	A	

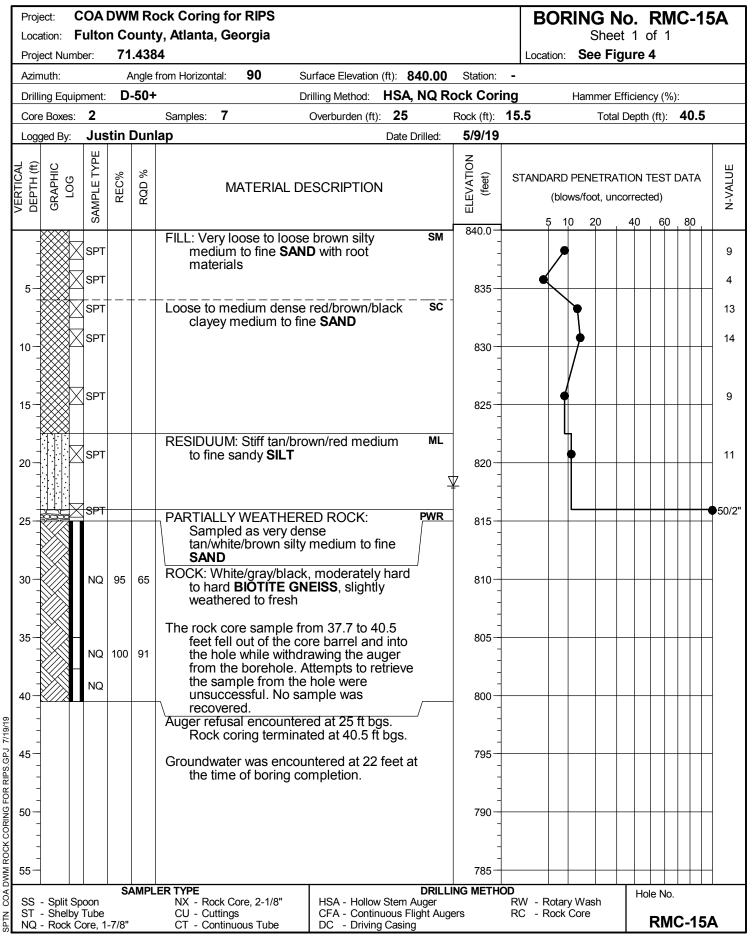


	Project:COA DWM Rock Coring for RIPSLocation:Fulton County, Atlanta, GeorgiaBORING No.SPT-6ASheet 2 of 2												
	ect Num			.438			Location:			ure∶			
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION	ELEVATION (feet)	STANDARD PENETRATION TEST (blows/foot, uncorrected)						N-VALUE
		0			(Continued)	┟───┤	5 1	0 20)	40	60	80	
-		NQ	82	39	Black/white/gray/dark green/pink, moderately hard to hard BIOTITE GNEISS , moderately weathered	710							
60					Auger refusal encountered at 15 ft bgs. Rock coring terminated at 59 ft bgs.	705							_
- - 65					Groundwater was not measured at the time of boring completion.								_
-						700							
70						695-							
- 75 -						690-							_
- - - 80-													
-						685-							
85-						680-							
90-													_
-						675							
95						670-							
100-						665-							
- - - - - - - - - - - - - - - - - - -													
						660							
110						655-							
						650-							_
					ER TYPE DRILL		<u> </u>						
SS Z ST	- Split S - Shelby	Tube		AWIPL	NX - Rock Core, 2-1/8" CU - Cuttings HSA - Hollow Stem Auger CFA - Continuous Flight Aug	ING METHO	RW - Rotar RC - Rock	y Wash Core	ı	Hol	e No.		^
NQ	- Rock (Core, 1	-7/8"		CT - Continuous Tube DC - Driving Casing						54	PT-6/	4

Proje					ock Coring for RIPS		BO		No. SP	PT-10	B		
	ation: F ect Numb			.438	y, Atlanta, Georgia 4				Location:		et 1 of 1		
Azim		CI.				urface Elevation (ft):	792 95	Station:		Oce I i	gure J		
	ng Equipi	ment:		-50+				ock Corin	a	Hammer E	Efficiency (%):	
	Boxes:	1						Rock (ft): 9	-		Depth (ft):		
	ged By:	Gat	oriel	Hof	fman		ate Drilled:	4/23/19					
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DE	ESCRIPTION		(feet)	•) PENETRA ws/foot, un			N-VALUE
-		SPT			Δ ASPHALT = 9"		 PWR	/93.0					50/4"
-		SPT			PARTIALLY WEATHERE Sampled as very der coarse to fine silty S	nse tan/white,	_	790					•50/5"
5-		SPT			Sampled as very hard tai sandy SILT	n/grey/brown	PWR						50/6"
10-		SPT			Sampled as very dense of coarse to fine silty S	grey/white/pink AND	PWR	-					\$ 50/6"
-		SPT					4	3 780 –					5 0/4"
15					ROCK: Pink/black/dark g very soft to moderate	ely hard							-
- - 20		NQ	100	65	GRANITE, moderate	ely weathered		775					-
-								770-					
25 - -					Auger refusal encountere Rock coring terminat	ed at 15 ft bgs. ted at 24.6 ft bg	S.						
30-					Groundwater was not en time of boring comp	etion. The borir	ig	765-					-
-					caved to 12.8 feet pr Groundwater was mo of 5.6 feet 24 hours a rock coring.	easured at a de	pth	760					
35					TOCK COMING.			755-					
40-													-
7/19/19								750-					
45 - - -													
- 100 FOR								745					
								740-					
55-													
SS Z ST	- Split Sp - Shelby	Tube		MPL	ER TYPE NX - Rock Core, 2-1/8" CU - Cuttings	HSA - Hollow Ste CFA - Continuou	em Auger s Flight Auge) RW - Rotar RC - Rock		Hole No		
NQ	- Rock C	ore, 1	-7/8"		CT - Continuous Tube	DC - Driving Ca	sing				<u> </u> 5P	T-10E	5



Proj					ock Coring for RIPS		BC	DRIN				C-1	2A
Loca	ation: F	ulto			y, Atlanta, Georgia				Sheet				
Proj	ect Numb	er:	71	.438	4		Locati	on: Se	e Fig	ure 4			
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	%JJA	RQD %	MATERIAL DESCRIPTION (Continued)	ELEVATION (feet)	STANDA	(blows/fo			d)	DATA _ 80	N-VALUE
- - - 60-		NQ	100	96	White/gray/black, moderately hard to hard BIOTITE GNEISS , fresh	775							
-					Auger refusal encountered at 41 ft bgs. Rock coring terminated at 61 ft bgs.	770							
65					Groundwater was encountered at 25.5 feet at 48 hours after boring completion.								
- 70													
- - 75-						760-							
-						755-							
80 						750-							
- 85— -													
- - 90						745-							
- - 95-						740-							
-						735							
100 — - -						730-							
6L/6L// T													
						725-							
						720-							
115- -													
SS	- Split Sp	boon	S	AMPL	NX - Rock Core, 2-1/8" HSA - Hollow Stem Au	DRILLING METHO	RW - Ro	otary Was	sh	Hole	No.		
ST NQ	- Shelby - Rock C	Tube	-7/8"		CU - Cuttings CFA - Continuous Fligh CT - Continuous Tube DC - Driving Casing	nt Augers	RC - Ro	ock Core		F	RMQ	C-12	2A



-	Project: COA DWM Rock Coring for RIPS BORING No. RMC-12B Location: Fulton County, Atlanta, Georgia Sheet 2 of 2 Project Number: 71.4384 Location: See Figure 4													
	ation: F ect Numb						Location							
FIUj			<u> </u>	.430	-	7	LOCALIO		<u>, i igi</u>					
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION (Continued)	ELEVATION (feet)		D PENE ows/foo 10 2(t, unco		d)	DATA	N-VALUE	
-					White/gray/black, moderately hard to hard					$\frac{1}{1}$	+	H		
- - 60		NQ	100	100	BIOTITE GNEISS, slightly weathered to fresh	775								
65 — -													_	
- - 70					Auger refusal encountered at 37 ft bgs. Rock coring terminated at 67 ft bgs.	765-								
- - - 75-					Groundwater was encountered at 29 feet at the time of boring completion and at 27 feet at 48 hours after boring completion.	760-							_	
- - - 80-						755-							_	
- - - 85-						750-								
-						- - 745 -								
90						740-								
95														
- - 100-						735-							_	
						730-								
61// 105 — - -						725-								
- 110										+			-	
						720-							-	
					ER TYPE DRILL		<u> </u>							
SS ST	- Split Sp - Shelby	oon Tube	5/	- IVIP'L	NX - Rock Core, 2-1/8" CU - Cuttings HSA - Hollow Stem Auger CFA - Continuous Flight Aug) RW - Rota RC - Rocl		n	Hole				
NQ	- Rock C	ore, 1	-7/8"		CT - Continuous Tube DC - Driving Casing	,010				F	RMQ	C-12	B	

APPENDIX III

SPT-1A Core Run #1: 18-19 ft bgs REC = 90%, RQD = 45%

SPT-1A Core Run #2: 19-24 ft bgs REC = 100%, RQD = 32%

SPT-1A Core Run #3: 24-29 ft bgs REC = 100%, RQD = 48%

SPT-1A Core Run #4: 29-34 ft bgs REC = 100%, RQD = 40%

SPT-1A Core Run #5: 34-39 ft bgs REC = 100%, RQD = 32%

SPT-1A Core Run #6: 39-44 ft bgs REC = 100%, RQD = 91%

SPT-1A Core Run #7: 44-49 ft bgs REC = 100%, RQD = 34%

SPT-1A Core Run #8: 49-54 ft bgs REC = 100%, RQD = 93%

SPT-1A Core Run #9: 54-59 ft bgs REC = 100%, RQD = 88%

SPT-1A Core Run #10: 59-64 ft bgs REC = 100%, RQD = 65%

SPT-1A Core Run #11: 64-69 ft bgs REC = 100%, RQD = 100%

SPT-1A Core Run #12: 69-74 ft bgs REC = 100%, RQD = 100%

SPT-1A Core Run #13: 74-79 ft bgs REC = 100%, RQD = 92%

SPT-1A Core Run #14: 79-84 ft bgs REC = 100%, RQD = 100%

SPT-2A Core Run #1: 9.8-19.8 ft bgs REC = 81%, RQD = 41%

SPT-2A Core Run #2: 19.8-29.8 ft bgs REC = 74%, RQD = 26%

SPT-2A Core Run #3: 29.8-39.8 ft bgs REC = 85%, RQD = 15%

SPT-2A Core Run #4: 39.8-49.8 ft bgs REC = 80%, RQD = 52%

SPT-2A Core Run #5: 49.8-59.8 ft bgs REC = 100%, RQD = 100%

SPT-2A Core Run #6: 59.8-71.8 ft bgs REC = 100%, RQD = 76%

No sample recovery from 70.8 to 71.8 ft bgs

SPT-3A Core Run #1: 32-42 ft bgs REC = 95%, RQD = 29%

SPT-3A Core Run #2: 42-52 ft bgs REC = 90%, RQD = 5%

SPT-3A Core Run #3: 52-62 ft bgs REC = 89%, RQD = 41%

SPT-3A Core Run #4: 62-72 ft bgs REC = 100%, RQD = 38%

SPT-3A Core Run #5: 72-82 ft bgs REC = 100%, RQD = 35%

SPT-4A Core Run #1: 25-35 ft bgs REC = 95%, RQD = 59%

SPT-4A Core Run #2: 35-45 ft bgs REC = 100%, RQD = 83%

SPT-4A Core Run #3: 45-55 ft bgs REC = 100%, RQD = 78%

SPT-4A Core Run #4: 55-60 ft bgs REC = 93%, RQD = 58%

SPT-5A Core Run #1: 25.4-35.4 ft. bgs REC = 74%, RQD = 40%

SPT-5A Core Run #2: 35.4-44.4 ft bgs REC = 86%, RQD = 53%

SPT-5A Core Run #3: 44.4-54.4 ft bgs REC = 99%, RQD = 94%

SPT-5A Core Run #4: 54.4-61 ft bgs REC = 100%, RQD = 99%

SPT-6A Core Run #1: 15-25 ft bgs REC = 85%, RQD = 30%

SPT-6A Core Run #2: 25-35 ft bgs REC = 80%, RQD = 51%

SPT-6A Core Run #3: 35-45 ft bgs REC = 77%, RQD = 52%

SPT-6A Core Run #4: 45-55 ft bgs REC = 100%, RQD = 78%

SPT-6A Core Run #5: 55-59 ft bgs REC = 82%, 39%

SPT-10B Core Run #1: 15-25 ft bgs REC = 100%, RQD = 65%

GC-1A Core Run #1: 41-51 ft bgs REC = 94%, RQD = 63%

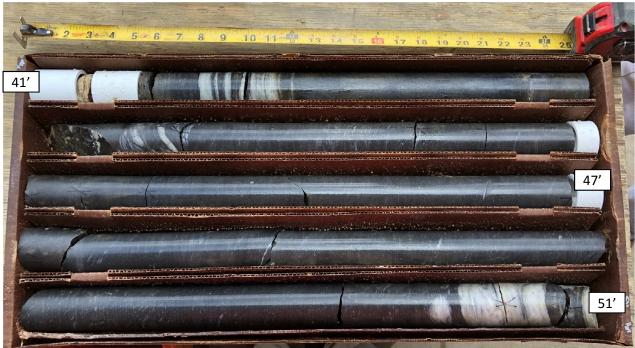
GC-1A Core Run #2: 51-61 ft bgs REC = 93%, RQD = 58%

GC-1A Core Run #3: 61-71 ft bgs REC = 63%, RQD = 49%

GC-2A Core Run #1: 9.5-19.5 ft bgs REC = 95%, RQD = 74%

GC-2A, Core Run #2: 19.5-29.5 ft bgs REC = 96%, RQD = 83%

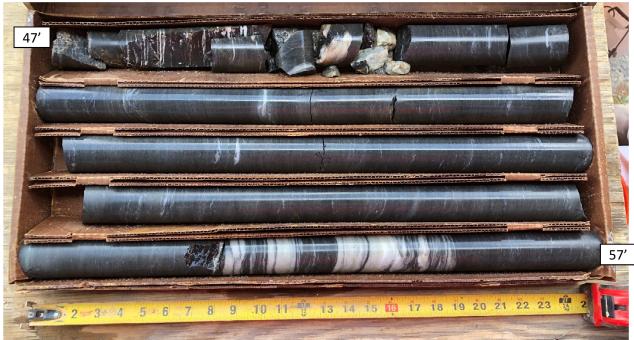
GC-2A Core Run #3: 29.5-39.5 ft bgs REC = 99%, RQD = 73%


GC-2A Core Run #4: 39.5-49.5 ft bgs REC = 91%, RQD = 38%

GC-2A Core Run #5: 49.5-59.5 ft. bgs REC = 100%, RQD = 57%



RMC-12A Core Run #1: 41-51 ft bgs REC = 97%, RQD = 96%



RMC-12A Core Run #2: 51-61 ft bgs REC = 100%, RQD = 96%

RMC-12B Core Run #1: 37-47 ft bgs REC = 97%, RQD = 84%

RMC-12B Core Run #2: 47-57 ft bgs REC = 100%, RQD = 88%

RMC-12B, Core Run #3: 57-67 ft bgs REC = 100%, 100%

RMC-15A Core Run #1: 25-35 ft bgs REC = 95%, RQD = 65%

RMC-15A Core Run #2: 35-37.7 ft bgs REC = 100%, RQD = 91%

RMC-15A Core Run #3: 37.7-40.5 ft bgs

The rock from 37.7 to 40.5 ft bgs fell out of the core barrel and into the hole while withdrawing the auger from the borehole. Attempts to retrieve the sample from the hole were unsuccessful. No sample was recovered.

APPENDIX IV

Client:	Willmer Engineering, Inc.				
Project:	New River Pump Station	- Coring A			
Location:	Atlanta, GA			Project No:	GTX-310081
Boring ID:		Sample Type:		Tested By:	tlm
Sample ID	:	Test Date:	06/03/19	Checked By:	smd
Depth :		Test Id:	506590		

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

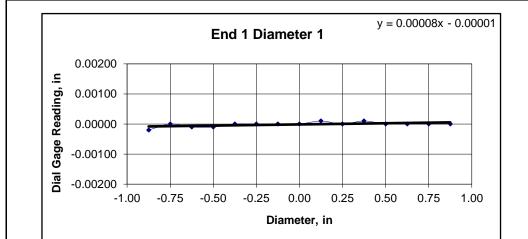
Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
RMC-12A	12A-WE02	42.375 - 42.750 ft	174	23981	1	No	2 , 4,*
RMC-12A	12A-WE04	49.570 - 49.916 ft	173	15413	3	No	4,*
RMC-12A	12A-WE06	55.542 - 55.916 ft	171	20715	1	No	4,*

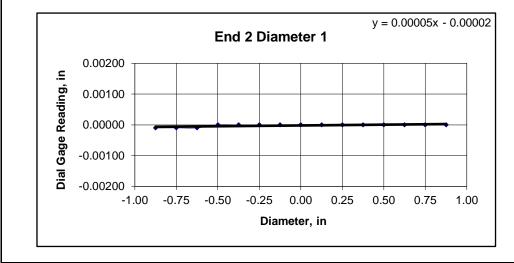
Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

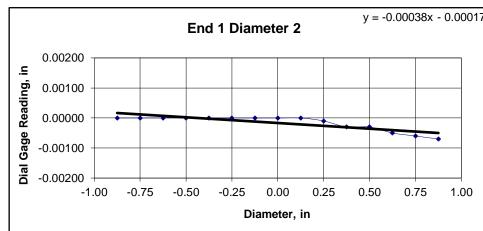
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

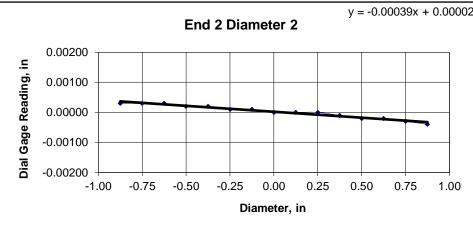
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

(See attached photographs)


- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.


*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.




Client:	Willmer Engineering, Inc.	Test Date:	6/3/2019	
Project Name:	New River Pump Station - C	Coring A	Tested By:	cmh
Project Location:	Atlanta, GA		Checked By:	jsc
GTX #:	310081			
Boring ID:	RMC-12A			
Sample ID:	12A-WE02			
Depth:	42.375-42.750	ft		
Visual Description:	See photographs			

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	NESS (Prod	
	:	1		2	Aver	age					
Specimen Length, in:	4.	34	4.	34	4.3	34			Maximum gap l	between sic	
Specimen Diameter, in:	1.	85	1.	85	1.8	35				Is t	
Specimen Mass, g:	533	3.69									
Bulk Density, lb/ft ³	17	74	Minimum Diar	neter Tolerenc	e Met?	NO					
Length to Diameter Ratio:	2	.3	Length to Dia	meter Ratio To	lerance Met?	YES					
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	
Diameter 1, in	-0.00020	0.00000	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.0000	
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	-0.0003	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	
Diameter 1, in	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	
Diameter 2, in (rotated 90°)	0.00030	0.00030	0.00030	0.00020	0.00020	0.00010	0.00010	0.00000	0.00000	0.0000	

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism me	easurements al	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00030	1.850	0.00016	0.009	YES
Diameter 2, in (rotated 90°)	0.00070	1.850	0.00038	0.022	YES
END 2					
Diameter 1, in	0.00010	1.850	0.00005	0.003	YES
Diameter 2, in (rotated 90°)	0.00070	1.850	0.00038	0.022	YES

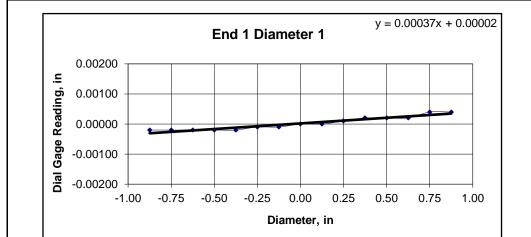
rocedure S1)

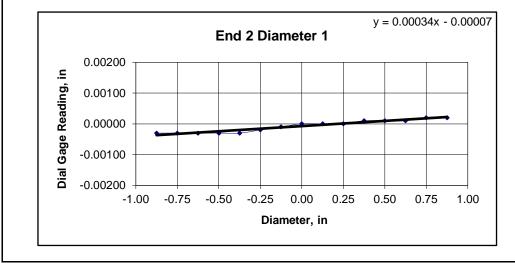
side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? NO

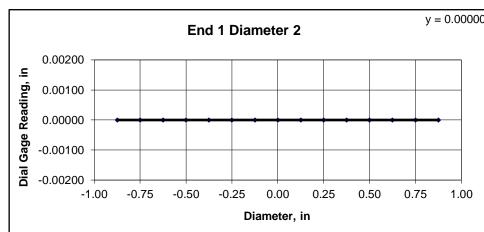
		ence must be < 0.0 Straightness Tole		NO	
250 0000 0010	0.375 0.00010 -0.00030 Difference betw 0° =		0.625 0.00000 -0.00050 eadings, in: 90° =	0.750 0.00000 -0.00060 0.00070	0.875 0.00000 -0.00070
250 0000 0000	0.375 0.00000 -0.00010 Difference betw 0° =	0.500 0.00000	0.625 0.00000 -0.00020 eadings, in: 90° = 020 in.	0.00070 0.750 0.00000 -0.00030 0.0007 Difference = <u>+</u>	0.875 0.00000 -0.00040
7	DIAMETER 1 End 1: End 2: Maximum Angu DIAMETER 2 End 1: End 2:	Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin Angle of Best Fit Lin lar Difference: Parallelism Tole Spherically Seated Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	ne: ne: rance Met? ne: ne:	0.00008 0.00442 0.00005 0.00295 0.00147 YES 0.00038 0.02177 0.00039 0.02259	
	Maximum Angu	lar Difference: Parallelism Tole Spherically Seated	rance Met?	0.00082 YES	

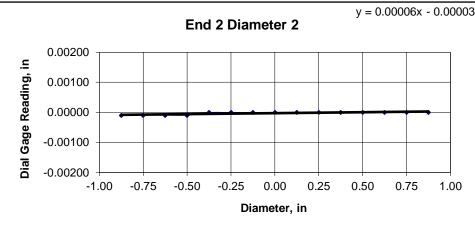
Maximum angle of departure must be $\leq 0.25^{\circ}$

Perpendicularity Tolerance Met?


Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring A
Project Location:	Atlanta, GA
GTX #:	310081
GIX #:	510061
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12A
Sample ID:	12A-WE02
Depth, ft:	42.375-42.750






Client:	Willmer Engineering, Ind	Willmer Engineering, Inc.		
Project Name:	New River Pump Station	- Coring A	Tested By:	cmh
Project Location:	Atlanta, GA		Checked By:	jsc
GTX #:	310081			
Boring ID:	RMC-12A			
Sample ID:	12A-WE04			
Depth:	49.570-49.916	ft		
Visual Description:	See photographs			

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod
		1		2	Ave	rage				
Specimen Length, in:	4.	51	4.	51	4.	51			Maximum gap b	between sic
Specimen Diameter, in:	1.	86	1.	86	1.8	86				
Specimen Mass, g:	555	5.23								
Bulk Density, lb/ft ³	1	73	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.4	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.0001
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00030	-0.00030	-0.00030	-0.00030	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism m	easurements al	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00060	1.860	0.00032	0.018	YES
Diameter 2, in (rotated 90°)	0.00000	1.860	0.00000	0.000	YES
END 2					
Diameter 1, in	0.00050	1.860	0.00027	0.015	YES
Diameter 2, in (rotated 90°)	0.00010	1.860	0.00005	0.003	YES

rocedure S1)

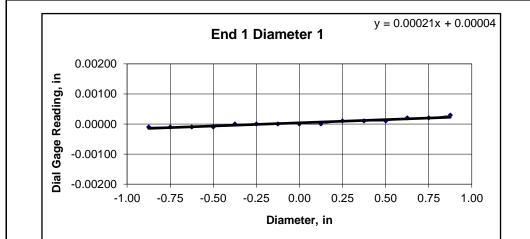
side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

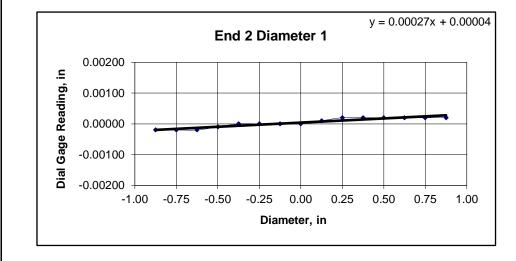
	Maximum diffei	rence must be < 0.02 Straightness Toler		YES	
250	0.375	0.500	0.625	0.750	0.875
010	0.00020		0.00020	0.00040	0.00040
0000	0.00000		0.00000	0.00000	0.00000
		een max and min rea			
	0° =	0.00060	90° =	0.00000	
250	0.375	0.500	0.625	0.750	0.875
0000	0.00010	0.00010 0	0.00010	0.00020	0.00020
0000	0.00000	0.00000 0	0.00000	0.00000	0.00000
	Difference betw	een max and min rea	adings, in:		
	0° =	0.0005	90° =	0.0001	
	Maximum differ	rence must be < 0.00)20 in.	Difference = $+$	0.00030
	1	Flatness Toler	ance Met?	YES	
2					
0	DIAMETER 1				
	End 1:				
		Slope of Best Fit Lin		0.00037	
		Angle of Best Fit Lin	e:	0.02144	
	F = 4 2.				
	End 2:	Slope of Best Fit Lin	•	0.00034	
		Angle of Best Fit Lin		0.01932	
		Angle of Dest Ht Elli	с.	0.01952	
	Maximum Angu	llar Difference:		0.00213	
		Parallelism Tolera Spherically Seated	ance Met?	YES	
)3					
13	DIAMETER 2				
	End 1:				
		Slope of Best Fit Lin		0.00000	
		Angle of Best Fit Lin	e:	0.00000	
	End 2:				
	Ena 2:	Slope of Best Fit Lin	Δ	0.00006	
		Angle of Best Fit Lin		0.00360	
		Angle of Dest Ht Em	с.	0.00500	
	Maximum Angu	llar Difference:		0.00360	
		Parallelism Toler Spherically Seated	ance Met?	YES	

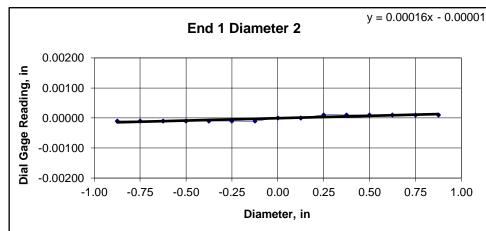
Maximum angle of departure must be \leq 0.25°

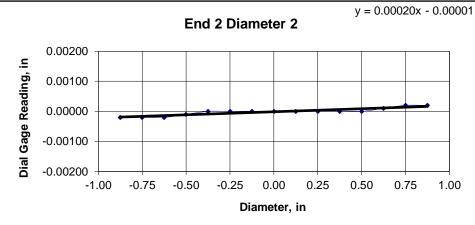
Perpendicularity Tolerance Met?

Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring A
Project Location:	Atlanta, GA
GTX #:	310081
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12A
Sample ID:	12A-WE04
Depth, ft:	49.570-49.916




After break




Client:	Willmer Engineering, Ind	Test Date:	6/3/2019		
Project Name:	New River Pump Station	New River Pump Station - Coring A			
Project Location:	Atlanta, GA		Checked By:	jsc	
GTX #:	310081				
Boring ID:	RMC-12A				
Sample ID:	12A-WE06				
Depth:	55.542-55.916	ft			
Visual Description:	See photographs				

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod
		1		2	Aver	age				
Specimen Length, in:	4.	10	4.	11	4.1	11			Maximum gap b	between sic
Specimen Diameter, in:	1.	85	1.85		1.85					Is t
Specimen Mass, g:	496	5.37								
Bulk Density, lb/ft ³	17	71	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.2	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.0001
Diameter 2, in (rotated 90 $^{\circ}$)	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.0001
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00010	0.0002
Diameter 2, in (rotated 90°)	-0.00020	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism me	easurements at	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00040	1.850	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00020	1.850	0.00011	0.006	YES
END 2					
Diameter 1, in	0.00040	1.850	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00040	1.850	0.00022	0.012	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

	Maximum diffe	rence must be < 0.02 Straightness Tolera		YES	
250	0.375	0.500	0.625	0.750	0.875
010	0.00010	0.00010 0	.00020	0.00020	0.00030
010	0.00010		.00010	0.00010	0.00010
		veen max and min rea			
	0° =	0.00040	90° =	0.00020	
250	0.375	0.500	0.625	0.750	0.875
020	0.00020	0.00020 0	.00020	0.00020	0.00020
0000	0.00000	0.00000 0	.00010	0.00020	0.00020
	Difference betv	veen max and min rea	dings, in:		
	0° =	0.0004	90° =	0.0004	
	Maximum diffe	rence must be < 0.00	20 in.	Difference = $+$	0.00020
		Flatness Tolera	ance Met?	YES	
_					
1	DIAMETER 1				
	DIAMETER I				
	End 1:				
		Slope of Best Fit Line	9	0.00021	
		Angle of Best Fit Line	9:	0.01211	
	End 2:		_	0 00007	
		Slope of Best Fit Line Angle of Best Fit Line		0.00027 0.01555	
		Angle of best fit Line	Ξ.	0.01555	
	Maximum Angu	lar Difference:		0.00344	
		Parallelism Tolera Spherically Seated	ance Met?	YES	
)1	DIAMETER 2				
	F				
	End 1:	Slope of Best Fit Line	2	0.00016	
		Angle of Best Fit Line		0.00900	
				0.00000	
	End 2:				
		Slope of Best Fit Line		0.00020	
		Angle of Best Fit Line	e:	0.01162	
	Maximum Angu	ılar Difference:		0.00262	
		Parallelism Tolera Spherically Seated	ance Met?	YES	
	1				

Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

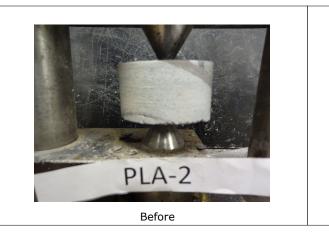
Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring A
Project Location:	Atlanta, GA
GTX #:	310081
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12A
Sample ID:	12A-WE06
Depth, ft:	55.542-55.916

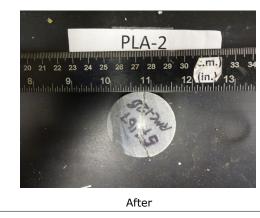
Client:	Willmer En	gineering, Inc.				
Project:	New River	Pump Station - Coring B				
Location:	Atlanta, GA	A			Project No:	GTX-310082
Boring ID:	RMC-12B		Sample Type:	cylinder	Tested By:	tlm
Sample ID:	12B-WE01		Test Date:	06/04/19	Checked By:	smd
Depth :	41.160-41	.542	Test Id:	506591		
Test Comm	ent:					
Visual Desc	ription:					
Sample Cor	mment:					

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-1	41.18 - 41.26 ft	1.86	1.02	2,082	2.43	1.56	858	0.900	773	19	16,300

Intact material and Discontinuity Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.

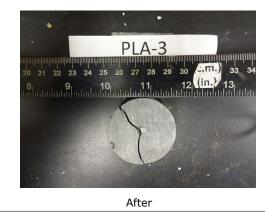

The reported diameter(D) is the average of three measurements.


- De = the equivalent core diameter
- Is = the uncorrected point load strength index
- F = the size correction factor
- Is(50) = the size corrected point load strength index

Client:	Willmer En	gineering, Inc.				
Project:	New River	Pump Station - Coring B				
Location:	Atlanta, GA	A Contraction of the second seco			Project No:	GTX-310082
Boring ID:	RMC-12B		Sample Type:	cylinder	Tested By:	tlm
Sample ID:	12B-WE03		Test Date:	06/04/19	Checked By:	smd
Depth :	57.167-57	.542	Test Id:	506592		
Test Comm	ent:					
Visual Desc	ription:					
Sample Cor	mment:					

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-2	57.167 - 57.27 ft	1.86	1.04	2,734	2.46	1.57	1112	0.903	1004	19	21,100

Intact material and Discontinuity Failure


- Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.
 - The reported diameter(D) is the average of three measurements.
 - De = the equivalent core diameter
 - Is = the uncorrected point load strength index
 - F = the size correction factor
 - Is(50) = the size corrected point load strength index

Client:	Willmer Engineering, Inc.				
Project:	New River Pump Station -	- Coring B			
Location:	Atlanta, GA			Project No:	GTX-310082
Boring ID:	RMC-12B	Sample Type:	cylinder	Tested By:	tlm
Sample ID:	12B-WE05	Test Date:	06/04/19	Checked By:	smd
Depth :	63.333-63.708	Test Id:	506593		
Test Comm	ent:				
Visual Desc	ription:				
Sample Co	nment:				

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-3	63.333 - 63.42 ft	1.86	1.09	4,053	2.58	1.61	1573	0.912	1435	19	29,900

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.

- De = the equivalent core diameter
- Is = the uncorrected point load strength index
- F = the size correction factor
- Is(50) = the size corrected point load strength index

Client:	Willmer Engineering, Inc				
Project:	New River Pump Station	- Coring B			
Location:	Atlanta, GA			Project No:	GTX-310082
Boring ID:		Sample Type:		Tested By:	tlm
Sample ID	:	Test Date:	06/03/19	Checked By:	smd
Depth :		Test Id:	506596		

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C

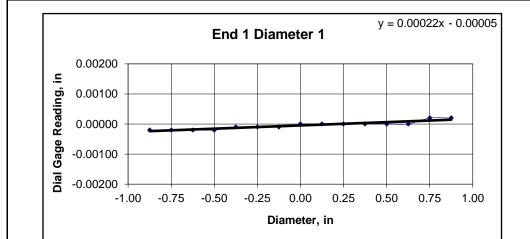
Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
RMC-12B	12B-WE02	41.542 - 41.916 ft	168	13536	1	No	4,*
RMC-12B	12B-WE04	57.542 - 57.916 ft	172	24980	1	No	4,*
RMC-12B	12B-WE06	63.708 - 64.083 ft	172	15972	1	No	4,*

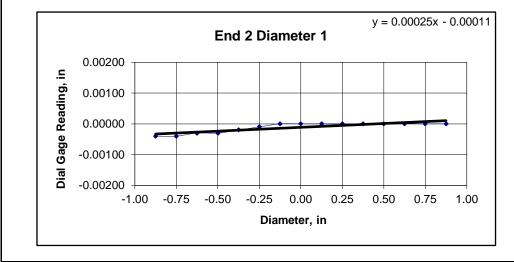
Notes: Density determined on core samples by measuring dimensions and weight and then calculating.

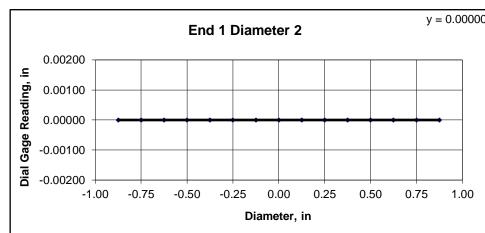
All specimens tested at the approximate as-received moisture content and at standard laboratory temperature.

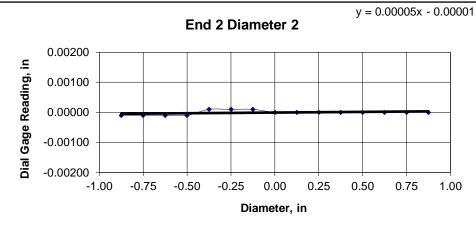
The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure

(See attached photographs)


- 1: Best effort end preparation. See Tolerance report for details.
- 2: The as-received core did not meet the ASTM side straightness tolerance due to irregularities in the sample as cored. 3: Specimen L/D < 2.
- 4: The as-received core did not meet the ASTM minimum diameter tolerance of 1.875 inches.
- 5: Specimen diameter is less than 10 times maximum particle size.
- 6: Specimen diameter is less than 6 times maximum particle size.


*Because the indicated tested specimens did not meet the ASTM D4543 standard tolerances, the results reported here may differ from those for a test specimen within tolerances.



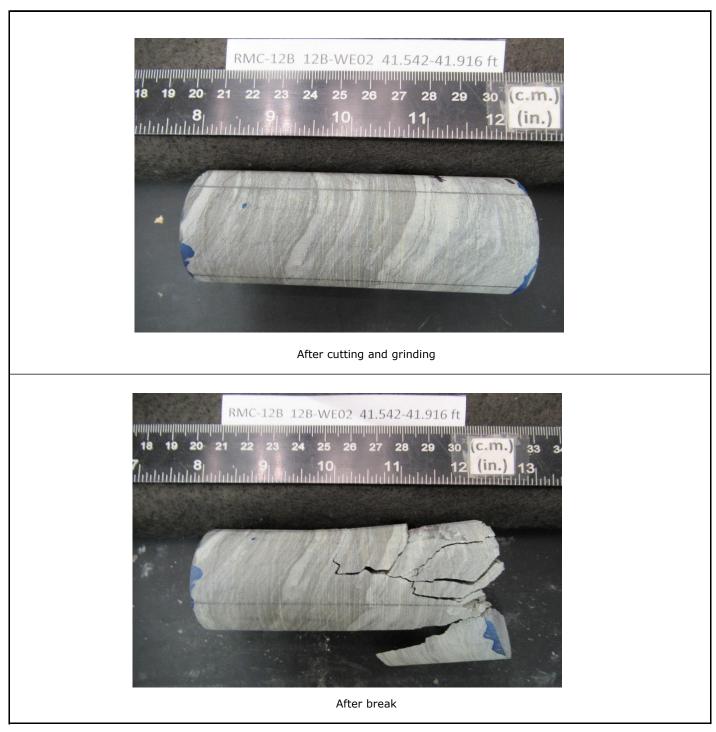

Client:	Willmer Engineering, Ir	າດ.	Test Date:	6/3/2019
Project Name:	New River Pump Station	New River Pump Station - Coring B		cmh
Project Location:	Atlanta, GA		Checked By:	jsc
GTX #:	310082			
Boring ID:	RMC-12B			
Sample ID:	12B-WE02			
Depth:	41.542-41.916	ft		
Visual Description:	See photographs			

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pro
		1	:	2	Ave	rage				
Specimen Length, in:	4.	48	4.	4.48		48		Maximum gap		between sic
Specimen Diameter, in:	1.	86	1.	86	1.86				Is	
Specimen Mass, g:	536	5.15								
Bulk Density, lb/ft ³	10	68	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.4	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	dure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00020	-0.00020	-0.00020	-0.00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00040	-0.00040	-0.00030	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	0.00010	0.00010	0.00010	0.00000	0.00000	0.0000

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism me	easurements at	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00040	1.860	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00000	1.860	0.00000	0.000	YES
END 2					
Diameter 1, in	0.00040	1.860	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00020	1.860	0.00011	0.006	YES

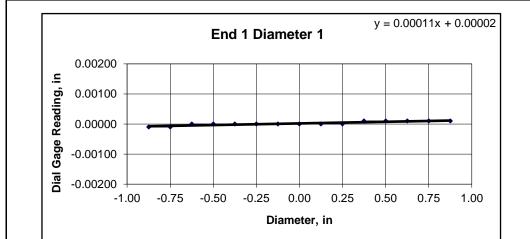
rocedure S1)

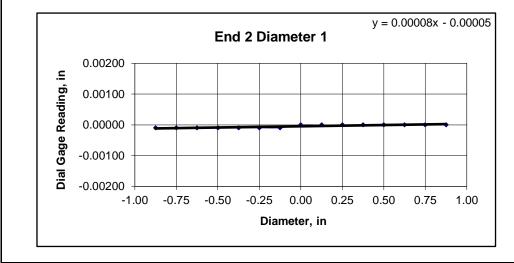
side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

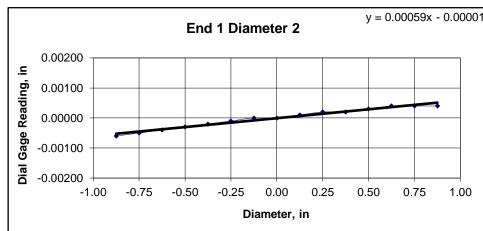

		rence must be < 0.02 Straightness Toler		YES	
250	0.375	0.500	0.625	0.750	0.875
0000 0000	0.00000 0.00000 Difference betw		0.00000 0.00000 adings_in;	0.00020 0.00000	0.00020 0.00000
	0° =		90° =	0.00000	
250 0000 0000	0.375 0.00000 0.00000		0.625 0.00000 0.00000	0.750 0.00000 0.00000	0.875 0.00000 0.00000
	0° =	een max and min re 0.0004	90° =	0.0002	0.00000
	Maximum diffei	ence must be < 0.00 Flatness Toler		Difference = <u>+</u> YES	_0.00020
0	DIAMETER 1				
	End 1:	Slope of Best Fit Lir Angle of Best Fit Lir		0.00022 0.01244	
	End 2:	Slope of Best Fit Lir		0.00025	
	Maximum Angu	Angle of Best Fit Lir Ilar Difference:	ie:	0.01424 0.00180	
		Parallelism Toler Spherically Seated	ance Met?	YES	
)1	DIAMETER 2				
	End 1:	Slope of Best Fit Lir Angle of Best Fit Lir		0.00000 0.00000	
	End 2:	Slope of Best Fit Lir Angle of Best Fit Lir		0.00005 0.00262	
	Maximum Angu	llar Difference:		0.00262	
		Parallelism Toler Spherically Seated	ance Met?	YES	

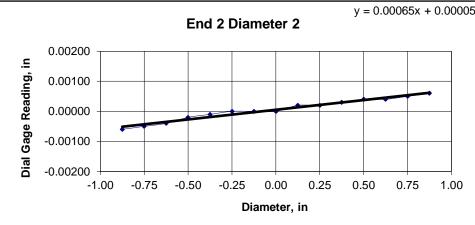
Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?


Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring B
Project Location:	Atlanta, GA
GTX #:	310082
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12B
Sample ID:	12B-WE02
Depth, ft:	41.542-41.916





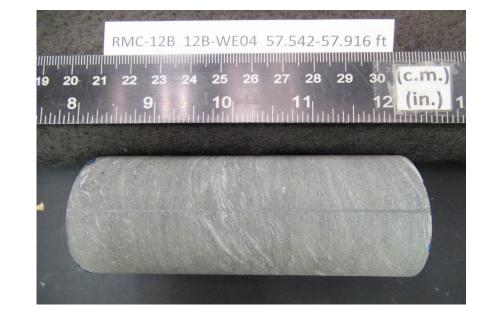

Client:	Willmer Engineering, In	с.	Test Date:	6/3/2019
Project Name:	New River Pump Station - Coring B		Tested By:	cmh
Project Location:	Atlanta, GA		Checked By:	jsc
GTX #:	310082			
Boring ID:	RMC-12B			
Sample ID:	12B-WE04			
Depth:	57.542-57.916	ft		
Visual Description:	See photographs			

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Pro
		1		2	Ave	rage				
Specimen Length, in:	4.	37	4.	4.37		37			Maximum gap between	
Specimen Diameter, in:	1.	86	1.	86	1.3	86				Ist
Specimen Mass, g:	535	5.72								
Bulk Density, lb/ft ³	1	72	Minimum Diar	meter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.3	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	dure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90 $^{\circ}$)	-0.00060	-0.00050	-0.00040	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00010	0.0002
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.0000	0.0000
Diameter 2, in (rotated 90°)	-0.00060	-0.00050	-0.00040	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00020	0.0002

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism m	easurements at	pove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00020	1.860	0.00011	0.006	YES
Diameter 2, in (rotated 90°)	0.00100	1.860	0.00054	0.031	YES
END 2					
Diameter 1, in	0.00010	1.860	0.00005	0.003	YES
Diameter 2, in (rotated 90°)	0.00120	1.860	0.00065	0.037	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

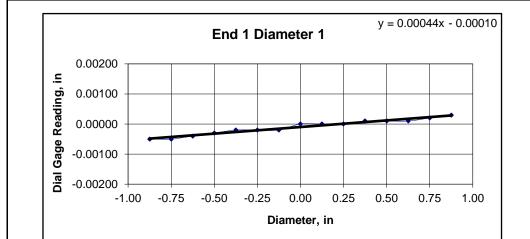

		rence must be < 0. Straightness Tole		YES	
	0.375	0.500	0.625	0.750	0.875
)	0.00010	0.00010	0.00010	0.00010	0.00010
)	0.00020	0.00030	0.00040	0.00040	0.00040
	Difference betw	een max and min			
	0° =	0.00020	90° =	0.00100	
	0.375	0.500	0.625	0.750	0.875
)	0.00000	0.00000	0.00000	0.00000	0.00000
)	0.00030	0.00040	0.00040	0.00050	0.00060
	Difference betw	een max and min	readings, in:		
	0° =	0.0001	90° =	0.0012	
	Maximum differ	rence must be < 0.	0020 in.	Difference = $+$	0.00060
		Flatness Tole	erance Met?	YES	
	DIAMETER 1				
	End 1:				
		Slope of Best Fit L		0.00011	
		Angle of Best Fit L	ine:	0.00622	
	End 2:				
	Liiu 2.	Slope of Best Fit L	ine	0.00008	
		Angle of Best Fit L		0.00458	
		-			
	Maximum Angu	lar Difference:		0.00164	
		Parallelism Tole Spherically Seated		YES	
	DIAMETER 2				
	DIAMLIEK Z				
	End 1:				
		Slope of Best Fit L	ine	0.00059	
		Angle of Best Fit L	ine:	0.03389	
	End 2:				
	Ellu 2:	Slope of Best Fit L	ine	0.00065	
		Angle of Best Fit L		0.03700	
		5			
	Maximum Angu	lar Difference:		0.00311	
		Parallelism Tole Spherically Seated		YES	

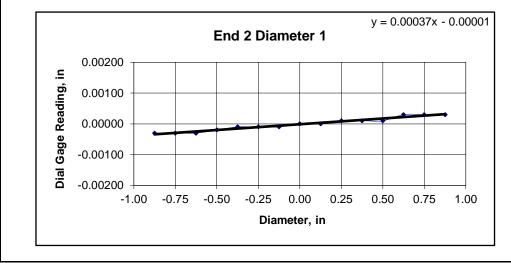
Maximum angle of departure must be \leq 0.25°

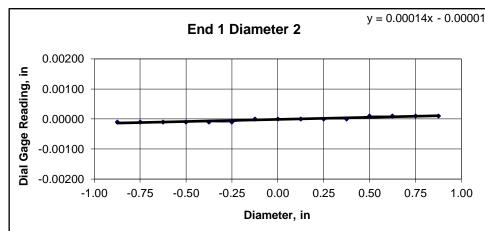
Perpendicularity Tolerance Met?

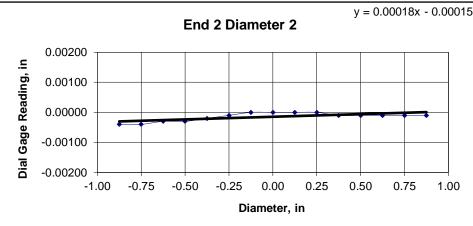
Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring B
Project Location:	Atlanta, GA
GTX #:	310082
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12B
Sample ID:	12B-WE04
Depth, ft:	57.542-57.916

After cutting and grinding




After break



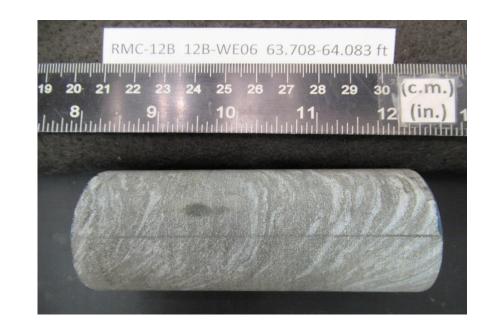

Client:	Willmer Engineering, Inc.		Test Date:	6/3/2019	
Project Name:	New River Pump Station - Co	ring B	Tested By	cmh	
Project Location:	Atlanta, GA		Checked B	y: jsc	
GTX #:	310082				
Boring ID:	RMC-12B				
Sample ID:	12B-WE06				
Depth:	63.708-64.083	ft			
Visual Description:	See photographs				

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod
	:	1		2	Ave	rage				
Specimen Length, in:	4.	36	4.	36	4.3	36			Maximum gap l	between sid
Specimen Diameter, in:	1.	85	1.	85	1.8	85				Ist
Specimen Mass, g:	529	9.88								
Bulk Density, lb/ft ³	17	72	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.4	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00050	-0.00050	-0.00040	-0.00030	-0.00020	-0.00020	-0.00020	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.0000
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00030	-0.00030	-0.00030	-0.00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.0001
Diameter 2, in (rotated 90°)	-0.00040	-0.00040	-0.00030	-0.00030	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.0000

PERPENDICULARITY (Procedu	ure P1) (Calculated from End Flatness	and Parallelism me	easurements at	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00080	1.850	0.00043	0.025	YES
Diameter 2, in (rotated 90°)	0.00020	1.850	0.00011	0.006	YES
END 2					
Diameter 1, in	0.00060	1.850	0.00032	0.019	YES
Diameter 2, in (rotated 90°)	0.00040	1.850	0.00022	0.012	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

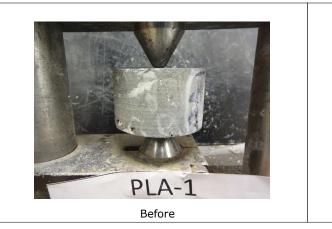

	Maximum diffei	rence must be < 0.02 Straightness Toler		YES	
250	0.375	0.500	0.625	0.750	0.875
0000	0.00010		0.00010	0.00020	0.00030
0000	0.00000		0.00010	0.00010	0.00010
		veen max and min re	•	0.00000	
	0° =	0.00080	90° =	0.00020	
250	0.375	0.500	0.625	0.750	0.875
010	0.00010	0.00010	0.00030	0.00030	0.00030
0000	-0.00010	-0.00010 -	0.00010	-0.00010	-0.00010
	Difference betw	veen max and min re	adings, in:		
	0° =	0.0006	90° =	0.0004	
	Maximum differ	rence must be < 0.00)20 in.	Difference = $+$	0.00040
		Flatness Toler	ance Met?	YES	
-					
1	DIAMETER 1				
	End 1:				
		Slope of Best Fit Lin		0.00044	
		Angle of Best Fit Lin	e:	0.02521	
	F = 4 2.				
	End 2:	Slope of Best Fit Lin	0	0.00037	
		Angle of Best Fit Lin		0.02144	
		Angle of Dest In Ell		0.02144	
	Maximum Angu	Ilar Difference:		0.00377	
		Parallelism Toler Spherically Seated	ance Met?	YES	
5					
5	DIAMETER 2				
	End 1:				
		Slope of Best Fit Lin	e	0.00014	
		Angle of Best Fit Lin	e:	0.00802	
	End 2:			0.00010	
		Slope of Best Fit Lin Angle of Best Fit Lin		0.00018 0.01015	
		Angle of dest fit Lin	e.	0.01015	
	Maximum Angu	llar Difference:		0.00213	
		Parallelism Toler Spherically Seated	ance Met?	YES	

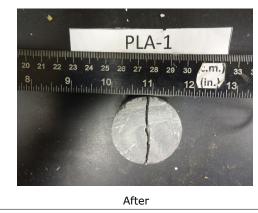
Maximum angle of departure must be \leq 0.25°

Perpendicularity Tolerance Met?

Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring B
Project Location:	Atlanta, GA
GTX #:	310082
Test Date:	6/3/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-12B
Sample ID:	12B-WE06
Depth, ft:	63.708-64.083

After cutting and grinding




After break

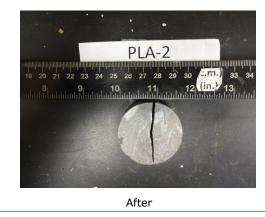
Client:	Willmer En	gineering, Inc.				
Project:	New River	Pump Station - Coring C				
Location:	Atlanta, GA	A			Project No:	GTX-310083
Boring ID:	RMC-15A		Sample Type:	cylinder	Tested By:	tlm
Sample ID:	15A-WE01		Test Date:	06/04/19	Checked By:	smd
Depth :	26.208-26	.458	Test Id:	506598		
Test Comm	ent:					
Visual Desc	ription:					
Sample Co	mment:					

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-1	26.208 - 26.30 ft	1.85	1.15	3,174	2.71	1.64	1173	0.922	1082	19	22,300

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.


- De = the equivalent core diameter
- Is = the uncorrected point load strength index
- F = the size correction factor
- Is(50) = the size corrected point load strength index

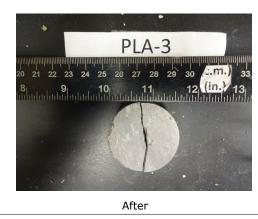
Client:	Willmer Engineering, Inc.				
Project:	New River Pump Station - Coring C				
Location:	Atlanta, GA			Project No:	GTX-310083
Boring ID:	RMC-15A	Sample Type:	cylinder	Tested By:	tlm
Sample ID:	: 15A-WE03	Test Date:	06/04/19	Checked By:	smd
Depth :	31.875	Test Id:	506599		
Test Comm	ent:				
Visual Desc	cription:				
Sample Co	mment:				

Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-2	32.27 - 32.37 ft	1.85	1.15	3,100	2.71	1.65	1145	0.923	1056	19	21,800

Intact Material Failure

Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.

The reported diameter(D) is the average of three measurements.


- De = the equivalent core diameter
- Is = the uncorrected point load strength index
- F = the size correction factor
- Is(50) = the size corrected point load strength index

Client:	Willmer Engineering, Inc.				
Project:	New River Pump Station - Coring C				
Location:	Atlanta, GA			Project No:	GTX-310083
Boring ID:	RMC-15A	Sample Type:	cylinder	Tested By:	tlm
Sample ID:	15A-WE04	Test Date:	06/04/19	Checked By:	smd
Depth :	36.167	Test Id:	506600		
Test Comm	ent:				
Visual Desc	cription:				
Sample Co	mment:				

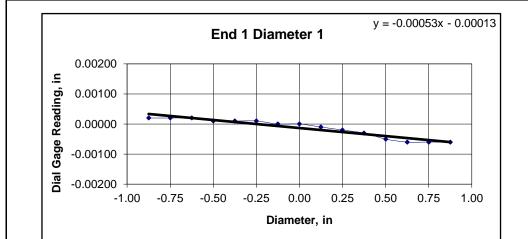
Test No.	Specimen Depth	Diameter, in	Thickness, in	Failure Load (P), Ibs	De, sq in	De, in	Is, psi	F	[s(50mm), psi	Generalized Correction Factor, K	Estimated Compressive Strength, psi
PLA-3	36.56 - 36.65 ft	1.85	0.99	4,145	2.34	1.53	1770	0.893	1581	18	31,900

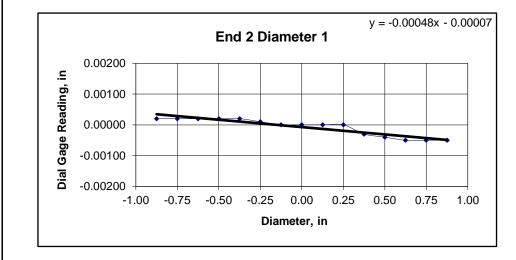
Intact Material Failure

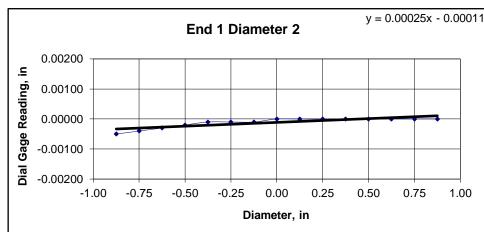
- Notes: Generalized correction factor, K, used to estimate the compressive strength based on the specimen depth and ASTM D5731 Table 1. The reported thickness (L) is the average of three measurements.
 - The reported diameter(D) is the average of three measurements.
 - De = the equivalent core diameter
 - Is = the uncorrected point load strength index
 - F = the size correction factor
 - Is(50) = the size corrected point load strength index

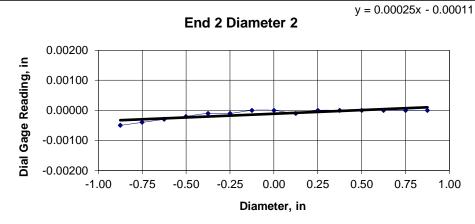
Client:	Willmer Engineering, Inc				
Project:	New River Pump Station	- Coring C			
Location:	Atlanta, GA			Project No:	GTX-310083
Boring ID:		Sample Type:		Tested By:	tlm
Sample ID	:	Test Date:	06/05/19	Checked By:	smd
Depth :		Test Id:	506603		

Bulk Density and Compressive Strength of Rock Core Specimens by ASTM D7012 Method C


Boring ID	Sample Number	Depth	Bulk Density, pcf	Compressive strength, psi	Failure Type	Meets ASTM D4543	Note(s)
RMC-15A	15A-WE02	34.083- 34.458 ft	163	8621	1	No	
RMC-15A	15A-WE03	31.875- 32.26 ft	169	14937	1	No	
RMC-15A	15A-WE04	36.167- 36.55 ft	169	16772	1	No	


Notes: Density determined on core samples by measuring dimensions and weight and then calculating. All specimens tested at the approximate as-received moisture content and at standard laboratory temperature. The axial load was applied continuously at a stress rate that produced failure in a test time between 2 and 15 minutes. Failure Type: 1 = Intact Material Failure; 2 = Discontinuity Failure; 3 = Intact Material and Discontinuity Failure (See attached photographs)




Client:	Willmer Engineering, Inc.	Test Date:	6/4/2019
Project Name:	New River Pump Station - Coring C	Tested By:	jck
Project Location:	Atlanta, GA	Checked By:	jsc
GTX #:	310083		
Boring ID:	RMC-15A		
Sample ID:	15A-WE02		
Depth:	34.083-34.458 ft		
Visual Description:	See photographs		

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod
		1		2	Aver	rage				
Specimen Length, in:	4.	20	4.	20	4.2	20			Maximum gap b	oetween sic
Specimen Diameter, in:	1.	85	1.	85	1.8	85				Ist
Specimen Mass, g:	484	4.08								
Bulk Density, lb/ft ³	1	63	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.3	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	dure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	0.00020	0.00020	0.00020	0.00010	0.00010	0.00010	0.00000	0.00000	-0.00010	-0.0002
Diameter 2, in (rotated 90°)	-0.00050	-0.00040	-0.00030	-0.00020	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.0000
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	0.00020	0.00020	0.00020	0.00020	0.00020	0.00010	0.00000	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	-0.00050	-0.00040	-0.00030	-0.00020	-0.00010	-0.00010	0.00000	0.00000	-0.00010	0.000

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism m	easurements at	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00080	1.850	0.00043	0.025	YES
Diameter 2, in (rotated 90°)	0.00050	1.850	0.00027	0.015	YES
END 2					
Diameter 1, in	0.00070	1.850	0.00038	0.022	YES
Diameter 2, in (rotated 90°)	0.00050	1.850	0.00027	0.015	YES

rocedure S1)

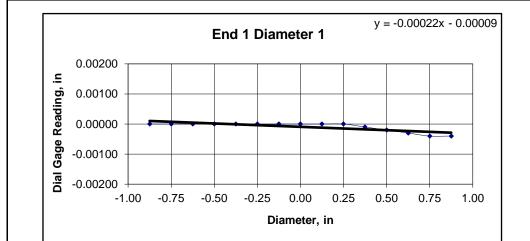
side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

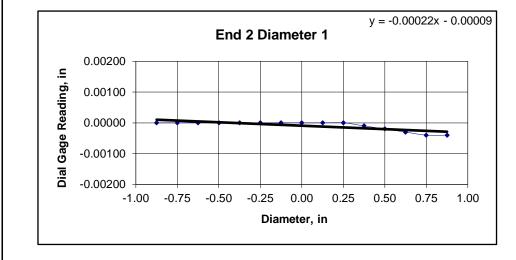
		VEC	
Straighti	ness Tolerance Met?	YES	
-0.00030 -0.000 0.00000 0.000 Difference between max a	050 -0.00060 000 0.00000 and min readings, in:	0.750 -0.00060 0.00000 0.00050	0.875 -0.00060 0.00000
-0.00030 -0.000 0.00000 0.000 Difference between max $0^{\circ} = 0.000$ Maximum difference must $0^{\circ} = 0.000$	040 -0.00050 000 0.00000 and min readings, in: $07 90^{\circ} =$ <i>it be < 0.0020 in.</i>	0.750 -0.00050 0.00000 0.0005 Difference = <u>+</u>	0.875 -0.00050 0.00000
Flatr	ness Tolerance Met?	YES	
Angle of End 2: Slope of Angle of Maximum Angular Differe Paralle	Best Fit Line: Best Fit Line Best Fit Line: ence: lism Tolerance Met?	0.00053 0.03061 0.00048 0.02734 0.00327 YES	
End 1: Slope of Angle of End 2: Slope of Angle of Maximum Angular Differe Paralle	Best Fit Line: Best Fit Line Best Fit Line: ence: lism Tolerance Met?	0.00025 0.01441 0.00025 0.01408 0.00033 YES	
	Straighti 0.375 0.50 -0.00030 -0.000 0.0000 0.000 Difference between max $0^{\circ} = 0.000$ 0.375 0.50 -0.00030 -0.000 0.00000 0.0000 Difference between max $0^{\circ} = 0.000$ $0^{\circ} = 0.000$ 0.0000 Difference between max $0^{\circ} = 0.000$ $0^{\circ} = 0.000$ 0.0000 Difference between max $0^{\circ} = 0.000$ $0^{\circ} = 0.000$ 0.0000 Difference between max $0^{\circ} = 0.000$ $0^{\circ} = 0.000$ 0.0000 Difference between max $0^{\circ} = 0.000$ Maximum difference mustFlatzDIAMETER 1End 1: Slope of Angle ofDIAMETER 2End 1: Slope of Angle ofDIAMETER 2End 1: Slope of Angle ofDIAMETER 2Slope of Angle ofMaximum Angular Differed Slope of Angle ofMaximum Angular Differed	0.375 0.500 0.625 $-0.00030 -0.00050 -0.00060$ $0.00000 0.00000 0.00000$ Difference between max and min readings, in: $0^{\circ} = 0.00080 90^{\circ} =$ $0.375 0.500 0.625$ $-0.00030 -0.00040 -0.00050$ $0.00000 0.00000 0.00000$ Difference between max and min readings, in: $0^{\circ} = 0.0007 90^{\circ} =$ $Maximum difference must be < 0.0020 in.$ Flatness Tolerance Met? DIAMETER 1 End 1: Slope of Best Fit Line Angle of Best Fit Line: End 2: $Slope of Best Fit Line:$ Maximum Angular Difference: DIAMETER 2 End 1: Slope of Best Fit Line: $Maximum Angular Difference:$ $DIAMETER 2$ End 1: Slope of Best Fit Line: $DIAMETER 2$ $End 1:$ $Slope of Best Fit Line:$	Straightness Tolerance Met? YES 0.375 0.500 0.625 0.750 -0.00030 -0.00050 -0.00060 -0.00060 0.00000 0.00000 0.00000 0.00000 Difference between max and min readings, in: 0° = 0.00050 -0.00050 0.375 0.500 0.625 0.750 -0.00030 -0.00040 -0.00050 -0.00050 0.375 0.500 0.625 0.750 -0.00000 0.00000 0.00000 0.00050 0.00000 0.00000 0.00000 0.00000 Difference between max and min readings, in: 0° = 0.0005 Maximum difference must be < 0.0020 in.

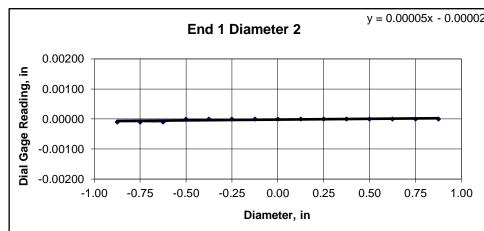
Maximum angle of departure must be $\leq 0.25^{\circ}$

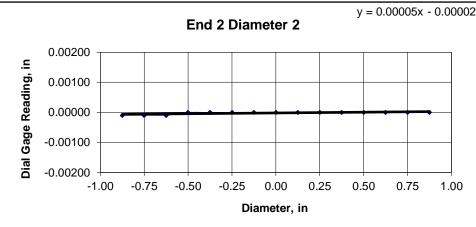
Perpendicularity Tolerance Met?

Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring C
Project Location:	Atlanta, GA
GTX #:	310083
Test Date:	6/5/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-15A
Sample ID:	15A-WE02
Depth, ft:	34.083-34.458






Client:	Willmer Engineering, Inc.	Test Date:	6/4/2019
Project Name:	New River Pump Station - Coring C	Tested By:	jck
Project Location:	Atlanta, GA	Checked By:	jsc
GTX #:	310083		-
Boring ID:	RMC-15A		
Sample ID:	15A-WE03		
Depth:	31.875-32.26 ft		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod	
		1	:	2	Aver	age					
Specimen Length, in:	4.	49	4.	49	4.4	19			Maximum gap l	etween sid	
Specimen Diameter, in:	1.	85	1.	85	1.8	35				Is t	
Specimen Mass, g:	536	5.19									
Bulk Density, lb/ft ³	1	69	Minimum Diar	neter Tolerenc	e Met?	NO					
Length to Diameter Ratio:	2	.4	Length to Dia	meter Ratio To	lerance Met?	YES					
END FLATNESS AND PARALL	ELISM (Proce	dure FP1)									
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	
Diameter 1, in	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	
Diameter 2, in (rotated 90 $^{\circ}$)	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250	
Diameter 1, in	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	
Diameter 2, in (rotated 90°)	-0.00010	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism me	easurements al	oove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle°	Perpendicularity Tolerance Met?
Diameter 1, in	0.00040	1.850	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00010	1.850	0.00005	0.003	YES
END 2					
Diameter 1, in	0.00040	1.850	0.00022	0.012	YES
Diameter 2, in (rotated 90°)	0.00010	1.850	0.00005	0.003	YES

rocedure S1)

side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

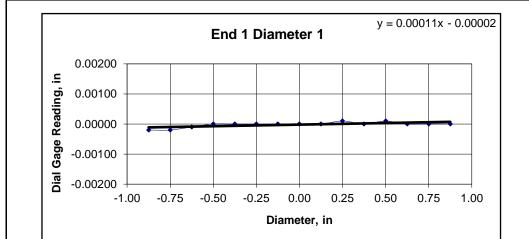
			0		
	Maximum diffe	rence must be < 0.02		VEC	
		Straightness Tolera	ince Met?	YES	
250 0000 0000	0.375 -0.00010 0.00000 Difference betw	-0.00020 -0	0.625).00030 .00000 dings, in:	0.750 -0.00040 0.00000	0.875 -0.00040 0.00000
	0° =	0.00040	90° =	0.00010	
250 0000 0000	0.375 -0.00010 0.00000 Difference betw 0° =	-0.00020 -0	0.625).00030 .00000 dings, in: 90° =	0.750 -0.00040 0.00000 0.0001	0.875 -0.00040 0.00000
	Maximum diffe	rence must be < 0.00		Difference = <u>+</u> YES	0.00020
		Flatness Tolera		TES	
)2	DIAMETER 1				
	End 1	Slope of Best Fit Line Angle of Best Fit Line		0.00022 0.01277	
	End 2	: Slope of Best Fit Line Angle of Best Fit Line		0.00022 0.01277	
	Maximum Ang	ular Difference:		0.00000	
		Parallelism Tolera Spherically Seated	ince Met?	YES	
)2	DIAMETER 2				
	End 1	Slope of Best Fit Line Angle of Best Fit Line		0.00005 0.00295	
	End 2	Slope of Best Fit Line Angle of Best Fit Line		0.00005 0.00295	
	Maximum Ang	ular Difference:		0.00000	
		Parallelism Tolera Spherically Seated	ince Met?	YES	

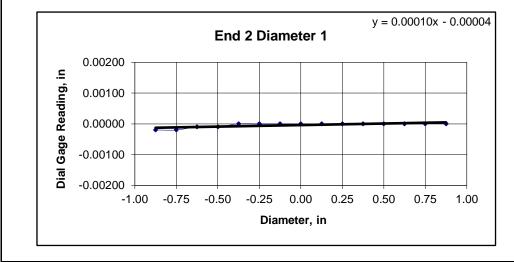
Maximum angle of departure must be $\leq 0.25^{\circ}$

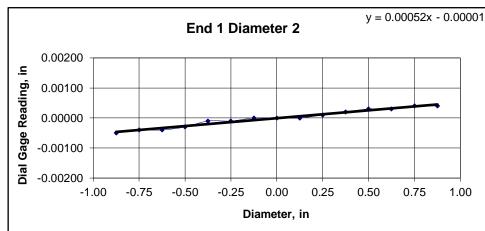
Perpendicularity Tolerance Met?

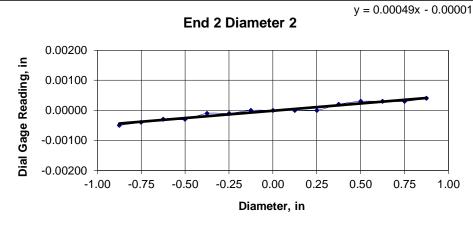
YES

Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring C
Project Location:	Atlanta, GA
GTX #:	310083
Test Date:	6/5/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-15A
Sample ID:	15A-WE03
Depth, ft:	31.875-32.26






Client:	Willmer Engineering, Inc.	Test Date:	6/4/2019
Project Name:	New River Pump Station - Coring C	Tested By:	jck
Project Location:	Atlanta, GA	Checked By:	jsc
GTX #:	310083		
Boring ID:	RMC-15A		
Sample ID:	15A-WE04		
Depth:	36.167-36.55 ft		
Visual Description:	See photographs		


UNIT WEIGHT DETERMINATION AND DIMENSIONAL AND SHAPE TOLERANCES OF ROCK CORE SPECIMENS BY ASTM D4543

BULK DENSITY								DEVIATION FR	OM STRAIGHTN	IESS (Prod
	:	1		2	Ave	rage				
Specimen Length, in:	4.	37	4.	37	4.3	37			Maximum gap b	between sid
Specimen Diameter, in:	1.	86	1.	86	1.8	86				Is t
Specimen Mass, g:	527	7.72								
Bulk Density, lb/ft ³	16	59	Minimum Diar	neter Tolerenc	e Met?	NO				
Length to Diameter Ratio:	2	.3	Length to Dia	meter Ratio To	lerance Met?	YES				
END FLATNESS AND PARALL	ELISM (Proced	lure FP1)								
END 1	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00020	-0.00020	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.0001
Diameter 2, in (rotated 90°)	-0.00050	-0.00040	-0.00040	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.0001
END 2	-0.875	-0.750	-0.625	-0.500	-0.375	-0.250	-0.125	0.000	0.125	0.250
Diameter 1, in	-0.00020	-0.00020	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000
Diameter 2, in (rotated 90°)	-0.00050	-0.00040	-0.00030	-0.00030	-0.00010	-0.00010	0.00000	0.00000	0.00000	0.0000

PERPENDICULARITY (Proced	ure P1) (Calculated from End Flatness	and Parallelism me	easurements at	pove)	
END 1	Difference, Maximum and Minimum (in.)	Diameter (in.)	Slope	Angle ^o	Perpendicularity Tolerance Met?
Diameter 1, in	0.00030	1.860	0.00016	0.009	YES
Diameter 2, in (rotated 90°)	0.00090	1.860	0.00048	0.028	YES
END 2					
Diameter 1, in	0.00020	1.860	0.00011	0.006	YES
Diameter 2, in (rotated 90°)	0.00090	1.860	0.00048	0.028	YES

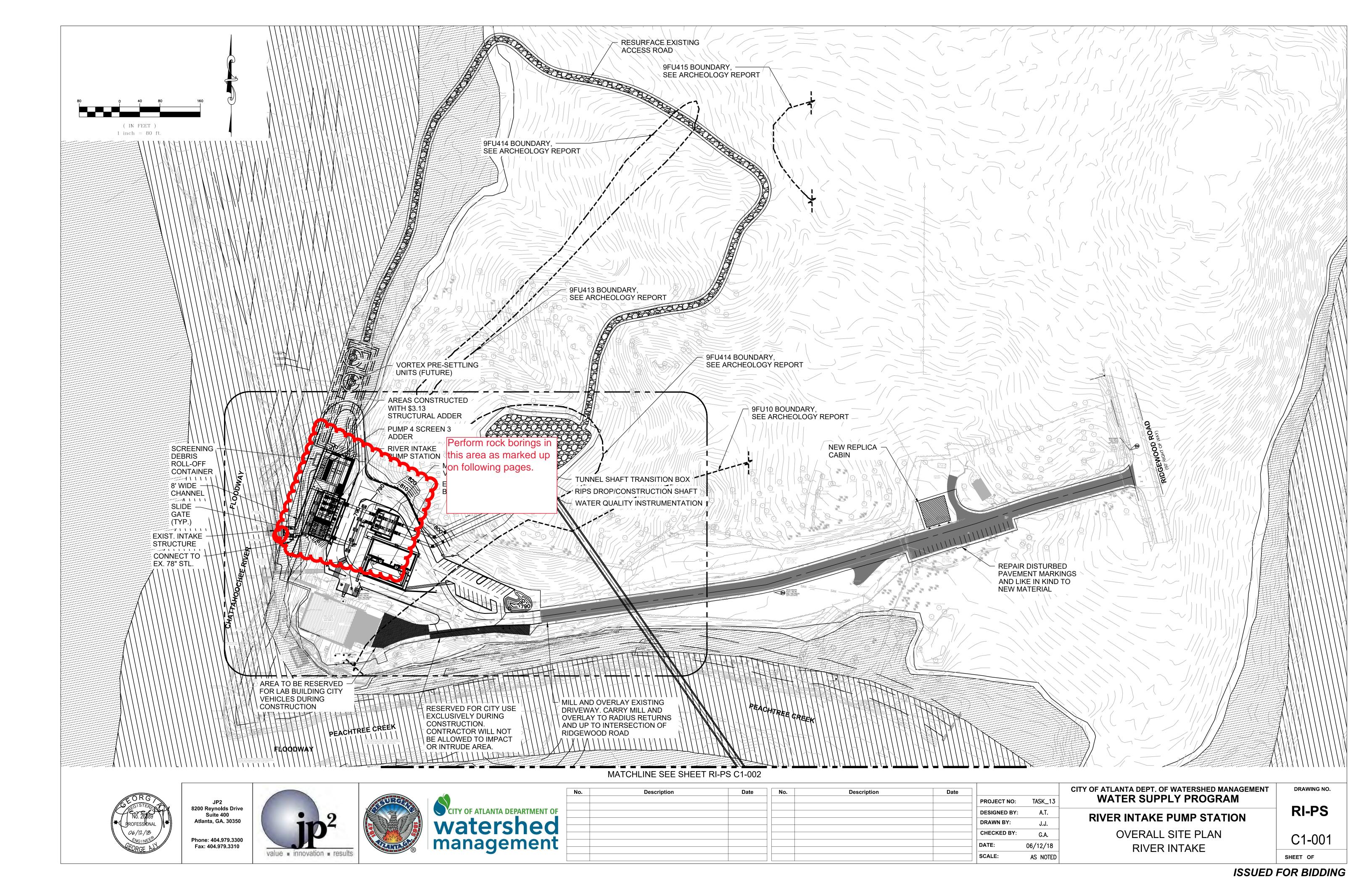
rocedure S1)

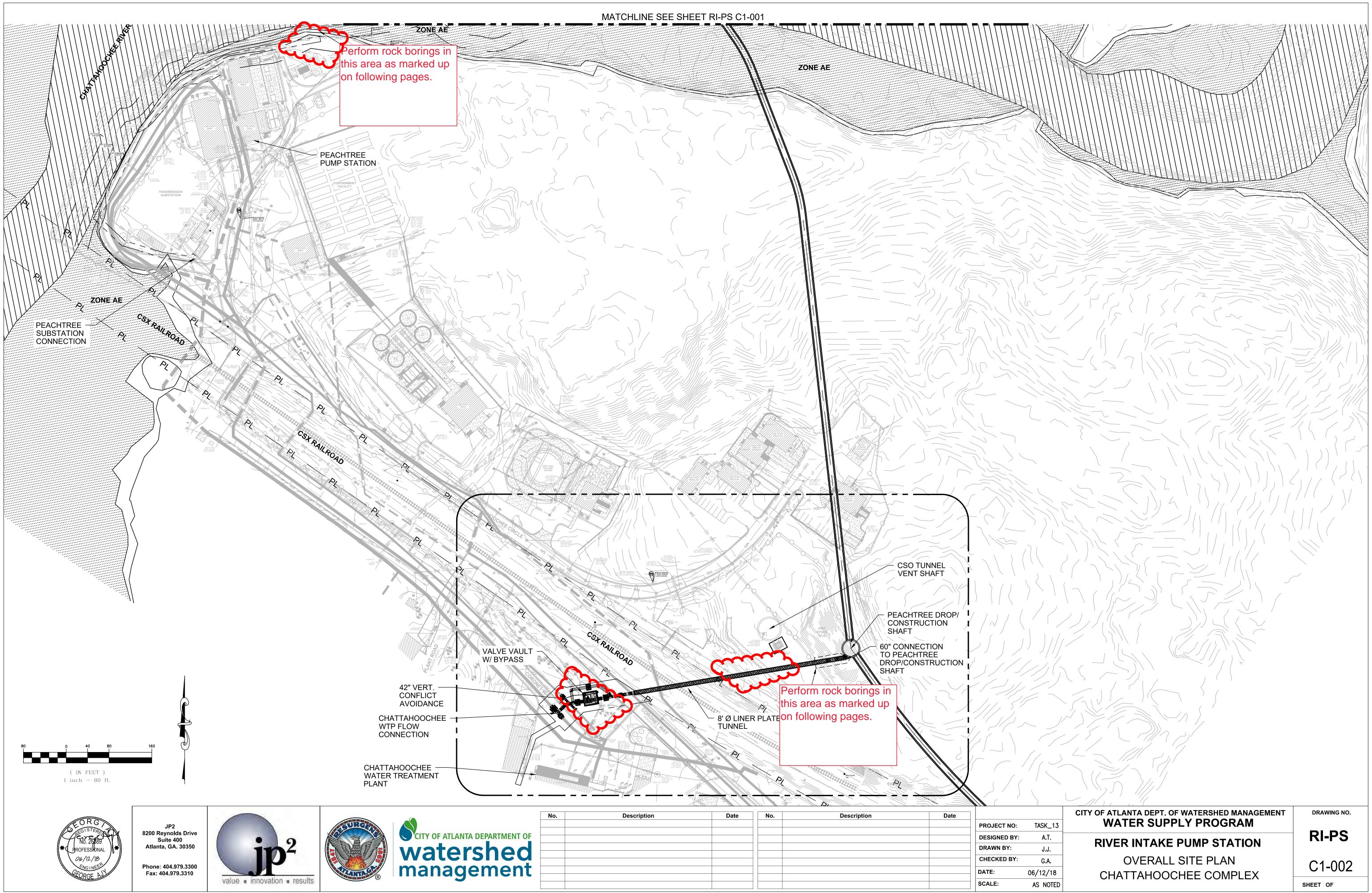
side of core and reference surface plate: Is the maximum gap \leq 0.02 in.? YES

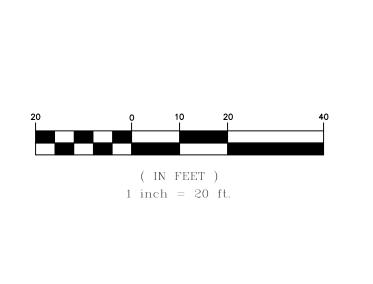
0° = 0.375 0.00000 0.00020 fference betw 0° =	0.00030 (veen max and min re 0.00030 0.500 0.00000 (veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	90° = 0.625 0.00000 0.00030 adings, in: 90° = 020 in. ance Met? ne ne	$\begin{array}{c} 0.750\\ 0.00000\\ 0.00040\\ \hline 0.00090\\ 0.750\\ 0.00000\\ 0.00030\\ \hline 0.0009\\ \text{Difference} = \pm\\ \textbf{YES}\\ \hline \textbf{YES}\\ \hline 0.00011\\ 0.00606\end{array}$	0.875 0.00000 0.00040 0.875 0.00000 0.00040
0.00000 0.00020 fference betw 0° = 0.375 0.00000 0.00020 fference betw 0° = aximum differ AMETER 1 End 1:	0.00010 (0 0.00030 (0 2000 max and min re 0.00030 (0 0.00000 (0 0.00030 (0 2000 max and min re 0.0002 2000 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	0.00000 0.00030 adings, in: <u>90° =</u> 0.625 0.00000 0.00030 adings, in: <u>90° =</u> 020 in. rance Met?	0.00000 0.00040 0.750 0.00000 0.00030 0.0009 Difference = <u>+</u> YES	0.00000 0.00040 0.875 0.00000 0.00040
0.00020 fference betw $0^{\circ} =$ 0.375 0.00000 0.00020 fference betw $0^{\circ} =$ aximum difference AMETER 1 End 1:	0.00030 (veen max and min re 0.00030 0.500 0.00000 (veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	0.00030 adings, in: <u>90° =</u> 0.625 0.00000 0.00030 adings, in: <u>90° =</u> 020 in. rance Met? ne ne:	0.00040 0.00090 0.750 0.00000 0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.00040 0.875 0.00000 0.00040
fference betw 0° = 0.375 0.00000 0.00020 fference betw 0° = aximum differ AMETER 1 End 1:	veen max and min re 0.00030 0.500 0.00000 (0 0.00030 (0 veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	adings, in: 90° = 0.625 0.00000 0.00030 adings, in: 90° = 020 in. rance Met?	0.00090 0.750 0.00000 0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.875 0.00000 0.00040
<u>0° =</u> 0.375 0.00000 0.00020 fference betw 0° = eximum differ AMETER 1 End 1:	0.00030 0.500 0.00000 0 0.00030 0 veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	90° = 0.625 0.00000 0.00030 adings, in: 90° = 020 in. ance Met? ne ne	0.750 0.00000 0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.00000 0.00040
0.375 0.00000 0.00020 fference betw 0° = eximum differ AMETER 1 End 1:	0.500 0.00000 (0.00030 (veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	0.625 0.00000 0.00030 adings, in: 90° = 020 in. rance Met?	0.750 0.00000 0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.00000 0.00040
0.00000 0.00020 fference betw 0° = aximum differ AMETER 1 End 1:	0.00000 (0.00030 (veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin	0.00000 0.00030 adings, in: 90° = 020 in. rance Met?	0.00000 0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.00000 0.00040
0.00020 fference betw 0° = aximum differ AMETER 1 End 1:	0.00030 (veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	0.00030 hadings, in: 90° = 020 in. h ance Met? he:	0.00030 0.0009 Difference = <u>+</u> YES 0.00011	0.00040
fference betw 0° = aximum differ AMETER 1 End 1:	veen max and min re 0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	adings, in: 90° = 020 in. • ance Met? ne	0.0009 Difference = <u>+</u> YES 0.00011	
0° = aximum differ AMETER 1 End 1:	0.0002 rence must be < 0.00 Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	90° = 020 in. rance Met?	Difference = <u>+</u> YES 0.00011	0.00045
AMETER 1 End 1:	Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	020 in. rance Met? ne ne:	Difference = <u>+</u> YES 0.00011	0.00045
AMETER 1 End 1:	Flatness Toler Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	r ance Met? ne ne:	• YES	0.00045
End 1:	Slope of Best Fit Lin Angle of Best Fit Lin Slope of Best Fit Lin	ne ne:	0.00011	
End 1:	Angle of Best Fit Lin Slope of Best Fit Lin	ie:		
End 1:	Angle of Best Fit Lin Slope of Best Fit Lin	ie:		
End 1:	Angle of Best Fit Lin Slope of Best Fit Lin	ie:		
	Angle of Best Fit Lin Slope of Best Fit Lin	ie:		
End 2:	Angle of Best Fit Lin Slope of Best Fit Lin	ie:		
End 2:	Slope of Best Fit Lin		0.00606	
End 2:				
End 2:				
			0.00010	
			0.00010 0.00573	
	Angle of Best Fit Lin	ie.	0.00373	
aximum Angu	llar Difference:		0.00033	
Ū				
	Parallelism Toler Spherically Seated	ance Met?	YES	
AMETER 2				
End 4.				
End 1:	Slope of Bost Fit Lin		0 00052	
			0.02550	
End 2:				
			0.00049	
	Angle of Best Fit Lin	ne:	0.02783	
aximum Angu	llar Difference:		0.00213	
			YES	
	End 1: End 2: ximum Angu	Slope of Best Fit Lir Angle of Best Fit Lir End 2: Slope of Best Fit Lir	Slope of Best Fit Line Angle of Best Fit Line: End 2: Slope of Best Fit Line Angle of Best Fit Line: ximum Angular Difference:	Slope of Best Fit Line0.00052Angle of Best Fit Line:0.02996End 2:Slope of Best Fit Line0.00049Angle of Best Fit Line:0.02783


Maximum angle of departure must be \leq 0.25°

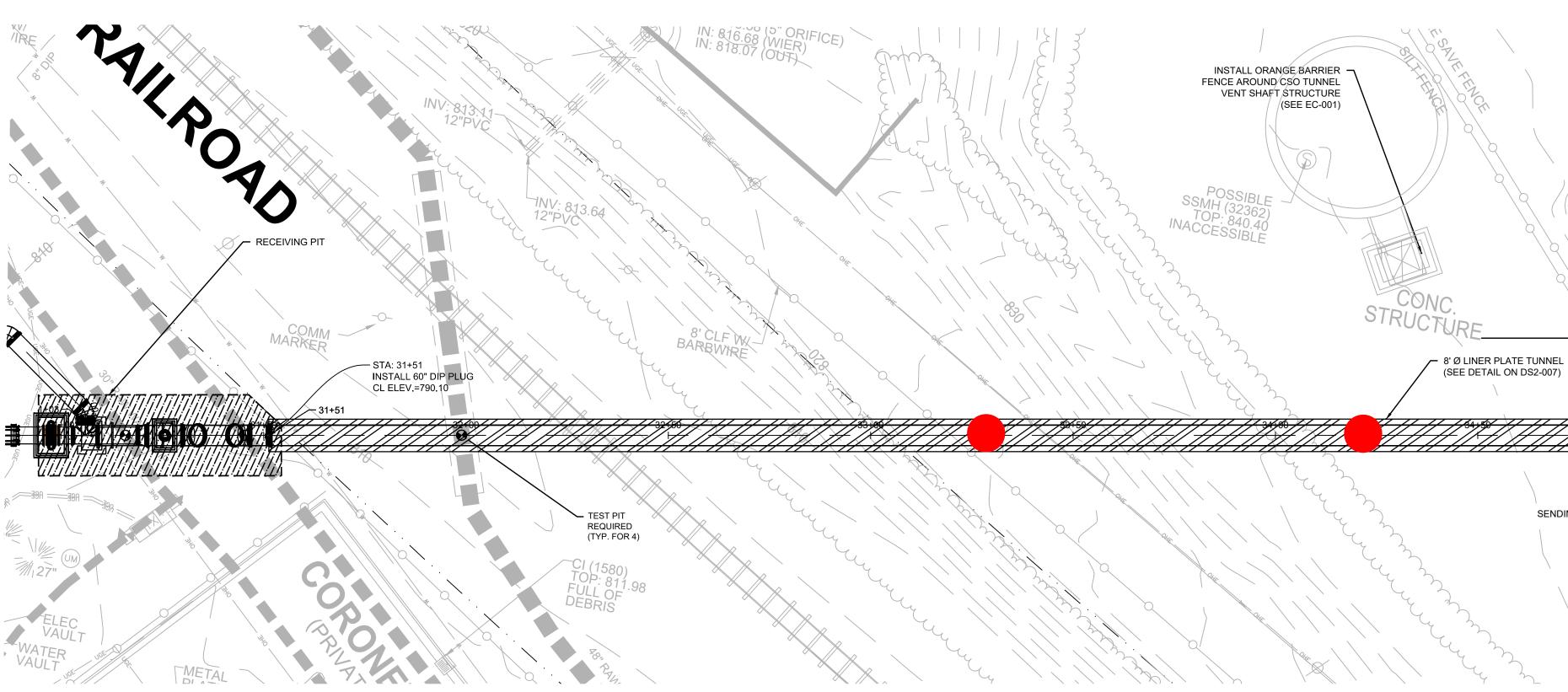
Perpendicularity Tolerance Met?

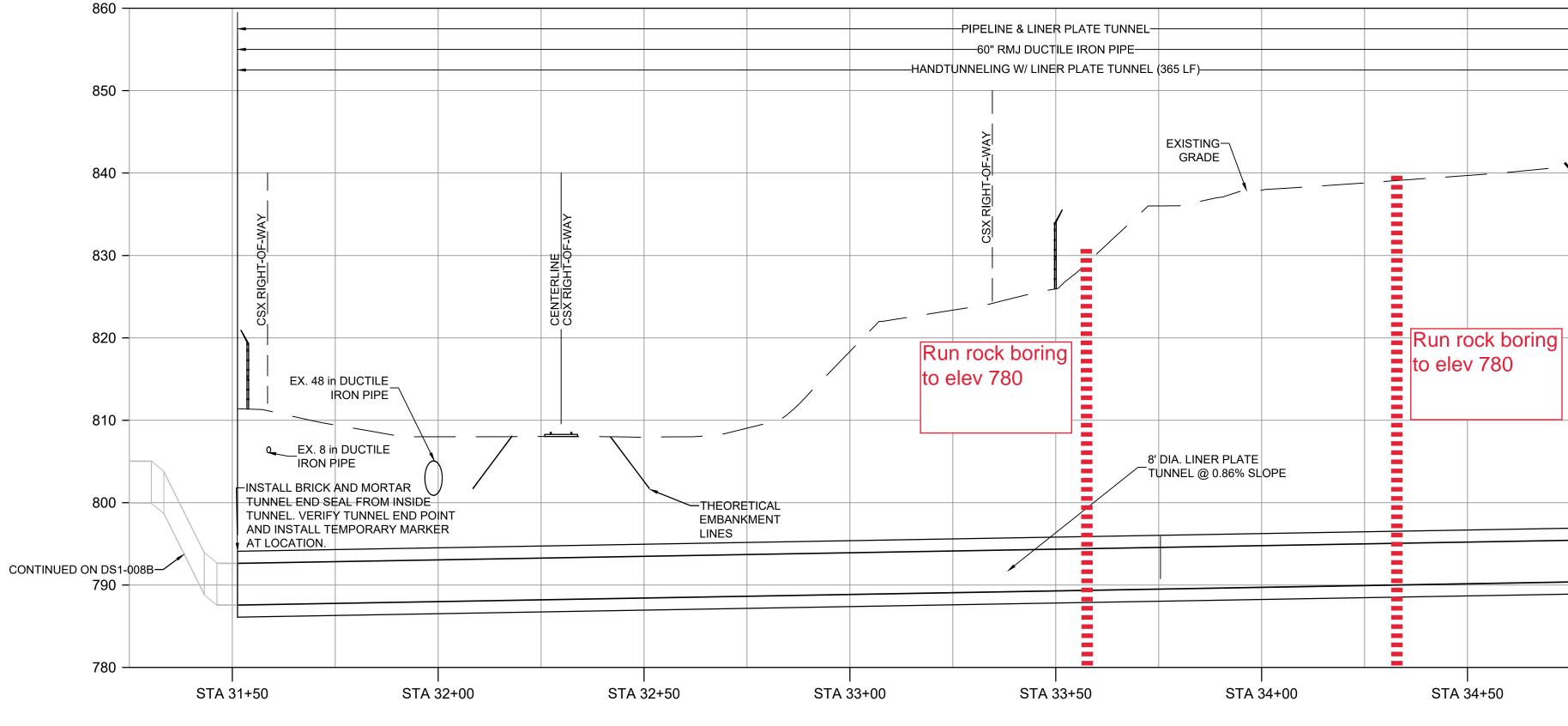

YES




-	
Client:	Willmer Engineering, Inc.
Project Name:	New River Pump Station - Coring C
Project Location:	Atlanta, GA
GTX #:	310083
Test Date:	6/5/2019
Tested By:	cmh
Checked By:	jsc
Boring ID:	RMC-15A
Sample ID:	15A-WE04
Depth, ft:	36.167-36.55

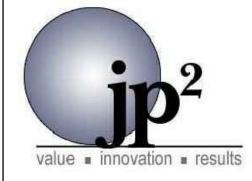
APPENDIX V





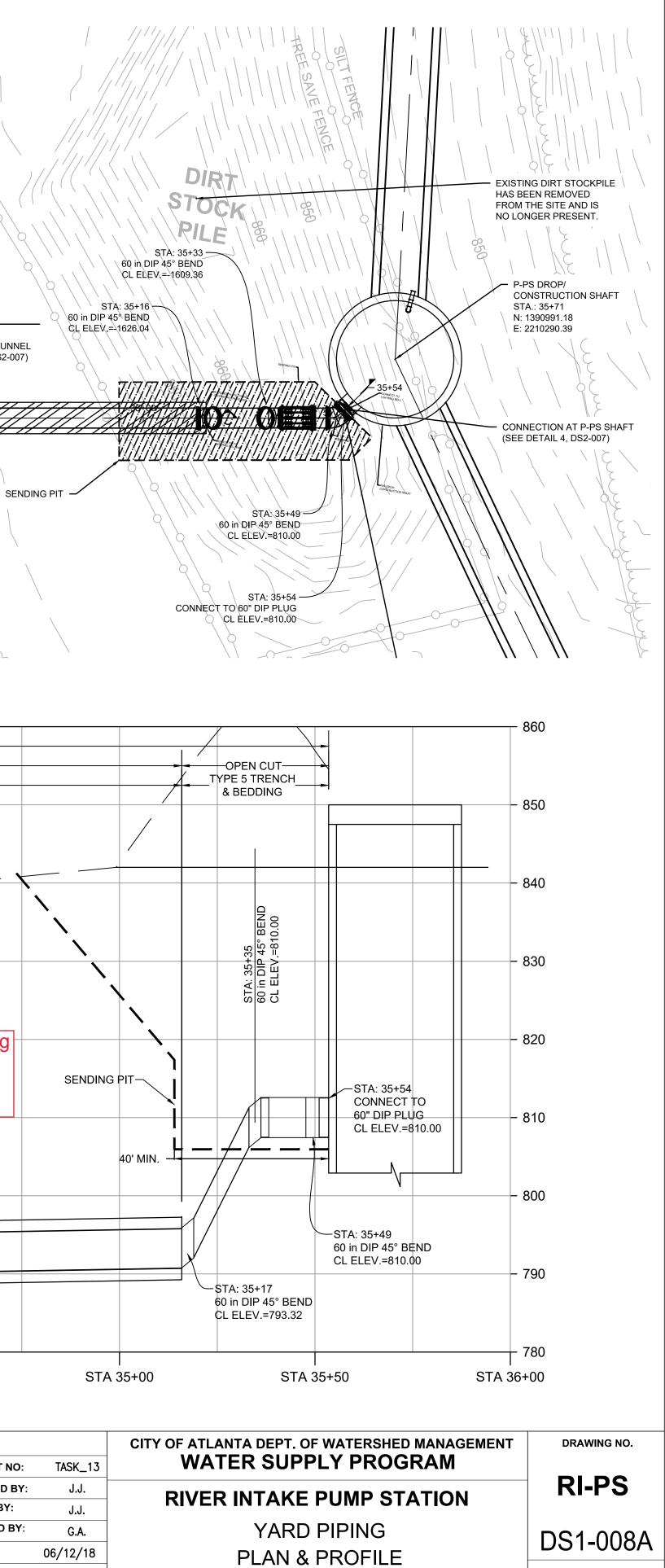
NOTES:

- 1. FINAL ALIGNMENT OF THE PROPOSED 60-INCH RAW WATER MAIN MAY ALTER PENDING VERTICAL UTILITY DATA.
- 2. SURVEY IS SUPPLEMENTED BY ADDITIONAL INFORMATION AS RECEIVED FROM CITY OF ATLANTA GIS AND AS-BUILTS. CONTRACTOR TO VERIFY THE LOCATION OF ALL EXISTING UTILITIES.
- 3. CONNECTIONS TO EXISTING TEES AND SERVICE CONNECTIONS MAY REQUIRE ADDITIONAL FITTINGS NOT SPECIFIED HEREON. ADDITIONAL INTERCONNECTIONS MAY BE PRESENT, THOUGH NOT DEPICTED HERE, AND SHALL BE RE-ESTABLISHED.
- 4. THE CONTRACTOR SHALL COMPLY WITH ALL OSHA REGULATIONS WHEN WORKING WITHIN THE IMMEDIATE VICINITY OF POWER POLES, POWER LINES, ETC.
- 5. YARD PIPING SHALL MAINTAIN EIGHTEEN (18) INCHES VERTICAL CLEARANCE FROM NON-POTABLE PIPELINES, TWENTY-FOUR (24) INCHES FROM ANY EXISTING GAS MAIN GREATER THAN TWO (2) INCHES, AND THIRTY-SIX (36) INCHES FROM ANY EXISTING PERPENDICULAR CROSSING OF GRAVITY AND FORCE MAINS. (MEASURED FROM OUTSIDE OF PIPE TO OUTSIDE OF PIPE.)
- 6. SEE SEQUENCING NOTES, G-004, NOTE 3.G.GA FOR SEQUENCING RESTRICTIONS AT THE P-PS DROP/CONSTRUCTION SHAFT SITE.

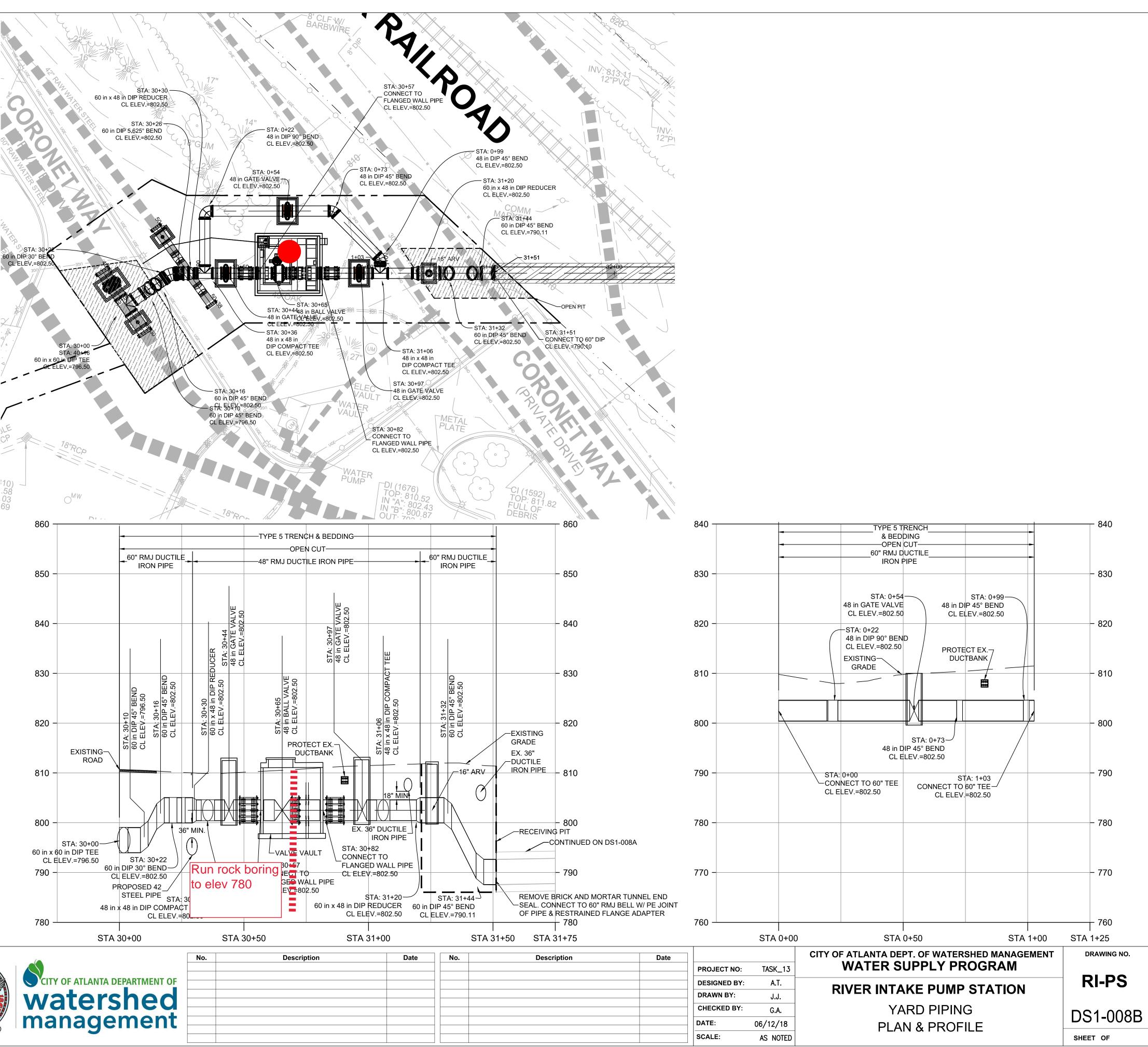


JP2 8200 Reynolds Drive Suite 400 Atlanta, GA. 30350

Phone: 404.979.3300 Fax: 404.979.3310

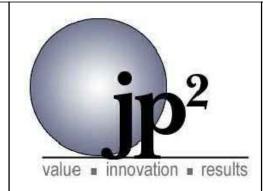


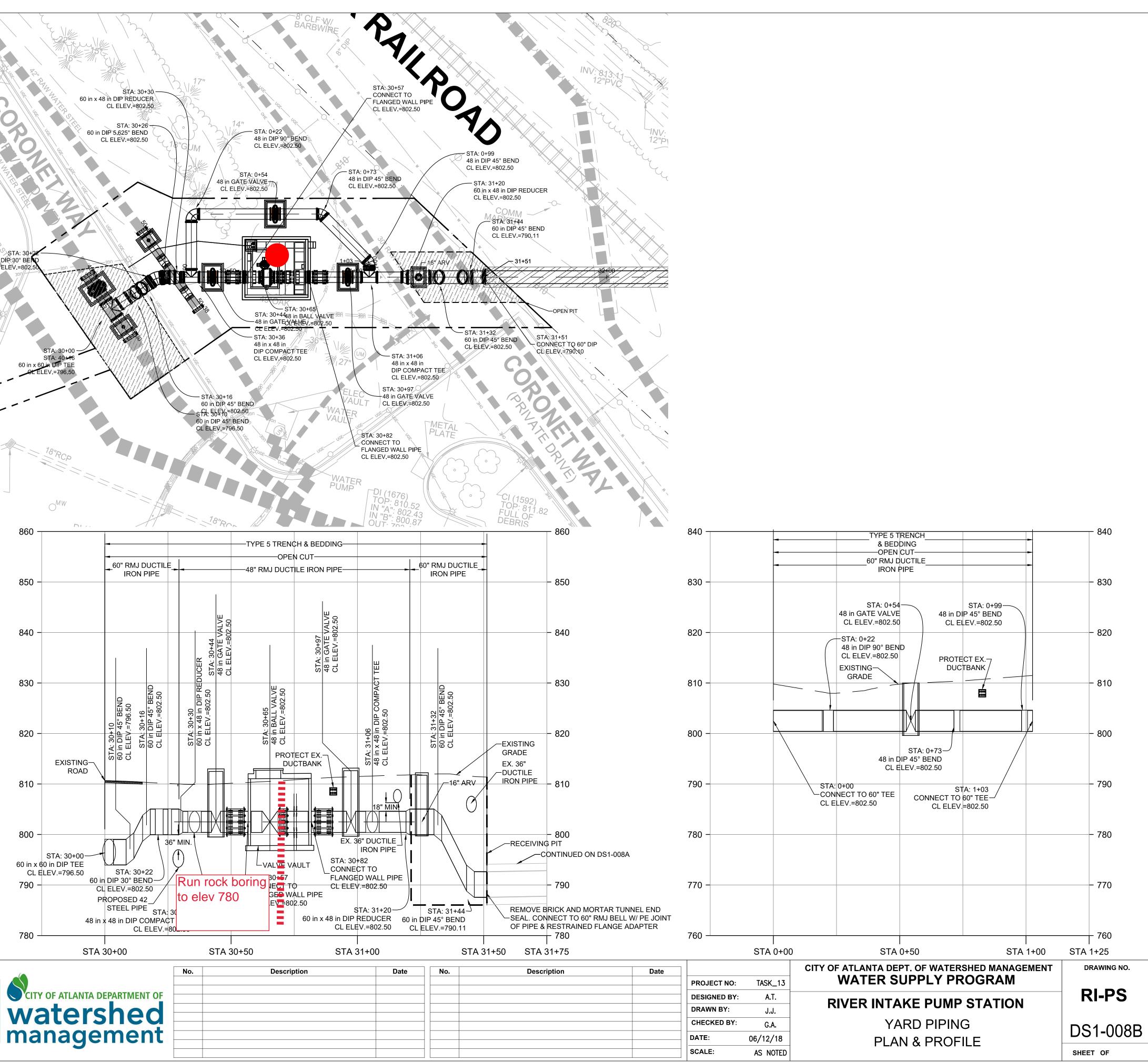
SHEET OF



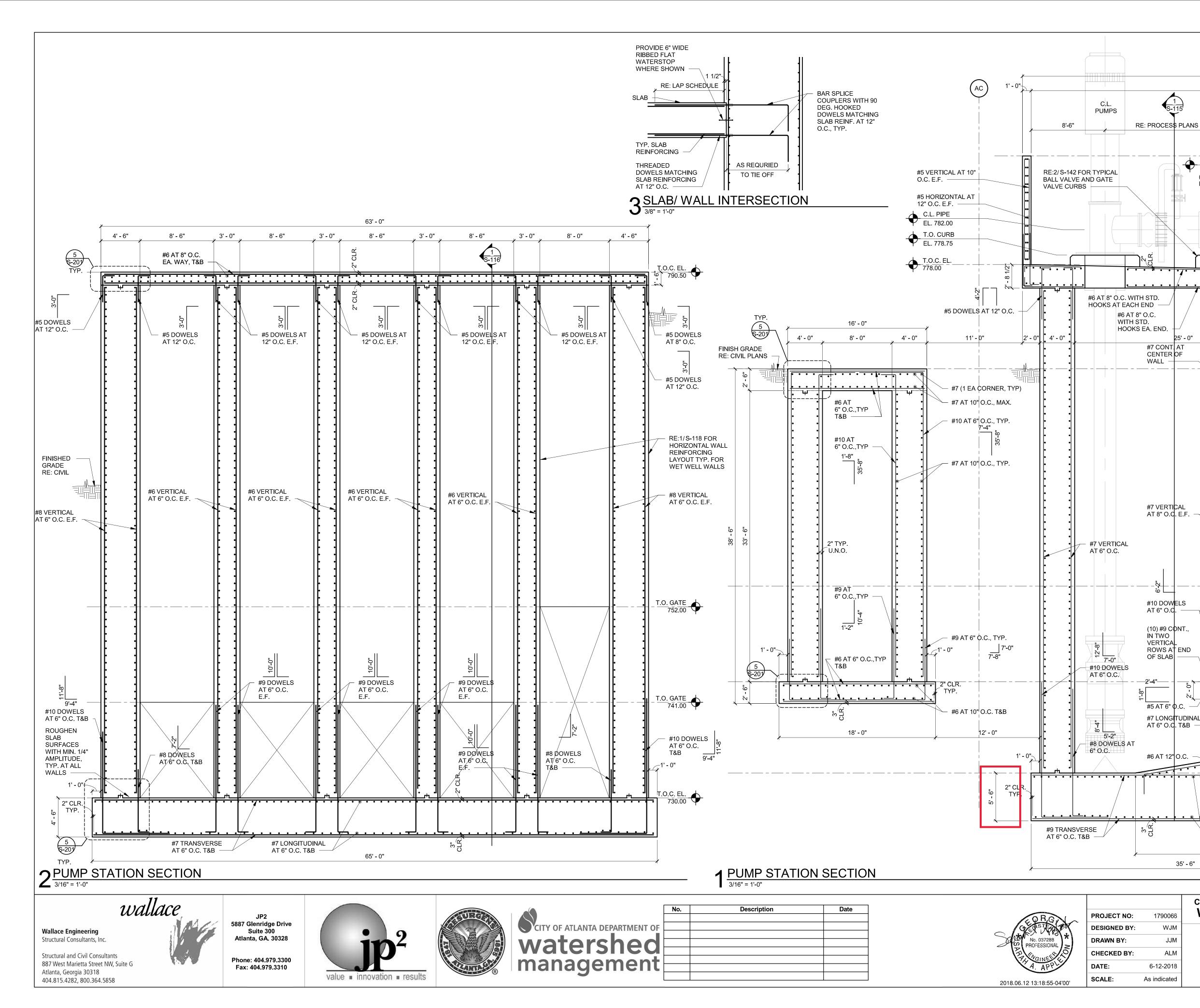
AS NOTED

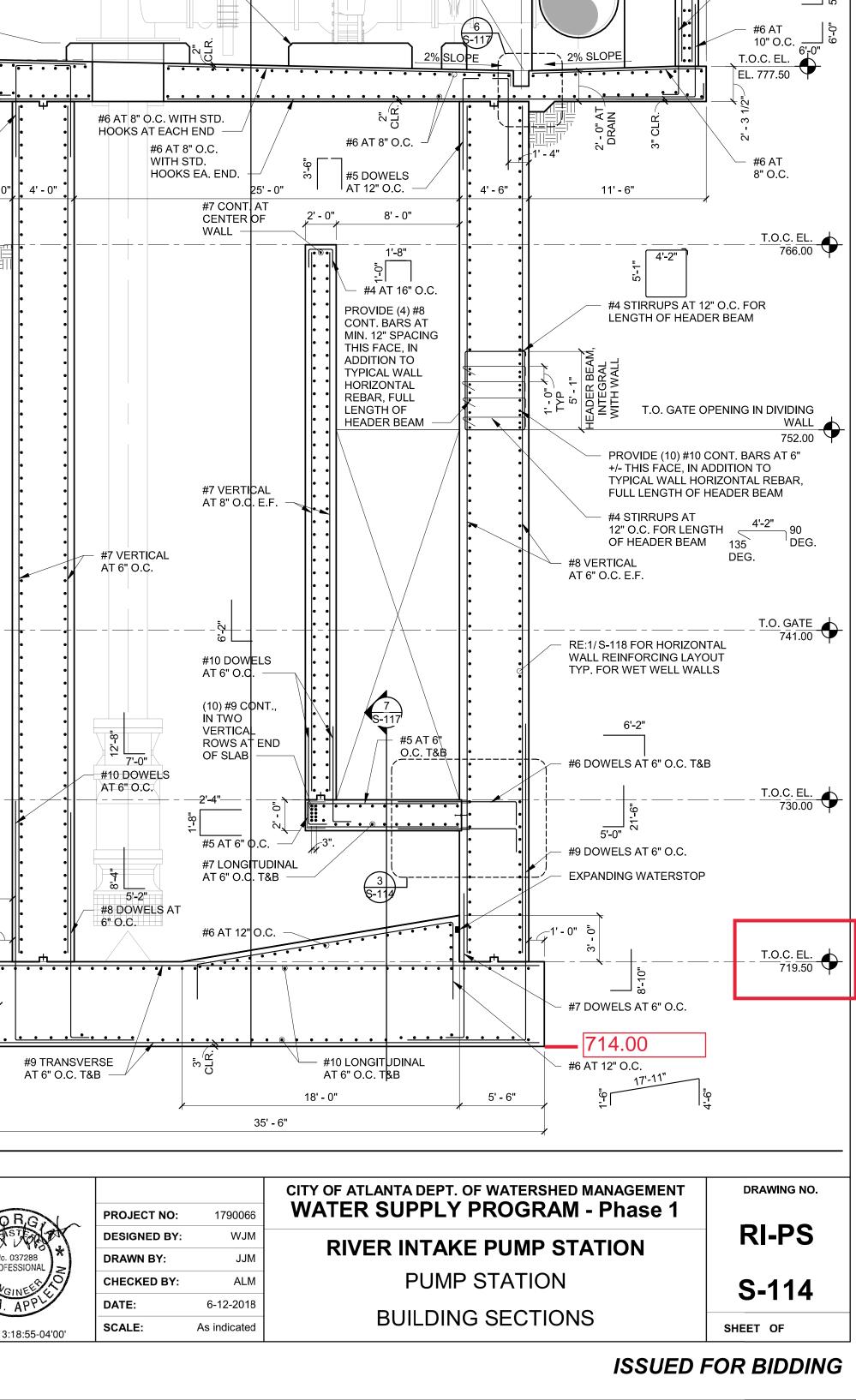
- 1. FINAL ALIGNMENT OF THE PROPOSED 60-INCH RAW WATER MAIN MAY ALTER PENDING VERTICAL UTILITY DATA.
- 2. SURVEY IS SUPPLEMENTED BY ADDITIONAL INFORMATION AS RECEIVED FROM CITY OF ATLANTA GIS AND AS-BUILTS. CONTRACTOR TO VERIFY THE LOCATION OF ALL EXISTING UTILITIES.
- CONNECTIONS TO EXISTING TEES AND SERVICE 3. CONNECTIONS MAY REQUIRE ADDITIONAL FITTINGS NOT SPECIFIED HEREON. ADDITIONAL INTERCONNECTIONS MAY BE PRESENT, THOUGH NOT DEPICTED HERE, AND SHALL BE RE-ESTABLISHED.
- 4. THE CONTRACTOR SHALL COMPLY WITH ALL OSHA REGULATIONS WHEN WORKING WITHIN THE IMMEDIATE VICINITY OF POWER POLES, POWER LINES, ETC.
- 5. YARD PIPING SHALL MAINTAIN EIGHTEEN (18) INCHES VERTICAL CLEARANCE FROM NON-POTABLE PIPELINES, TWENTY-FOUR (24) INCHES FROM ANY EXISTING GAS MAIN GREATER THAN TWO (2) INCHES, AND THIRTY-SIX (36) INCHES FROM ANY EXISTING PERPENDICULAR CROSSING OF GRAVITY AND FORCE MAINS. (MEASURED FROM OUTSIDE OF PIPE TO OUTSIDE OF PIPE.)


(IN FEET) 1 inch = 20 ft.



JP2 8200 Reynolds Drive Suite 400 Atlanta, GA. 30350


Phone: 404.979.3300 Fax: 404.979.3310



ISSUED FOR BIDDING

1' - 6" -6"

- T.O.C. EL. 790.50

#5 AT 10"

O.C. E.W.

#6 AT 10"

O.C. E.W.

#6 AT

10" O.C.

47' - 0"

44' - 0"

EL. 777.30

(RE: PROCESS

DWGS FOR DRAIN)

C.L.

BALL

VALVE

C.L

GATE

VALVE

- 1

RE: PROCESS

PLANS

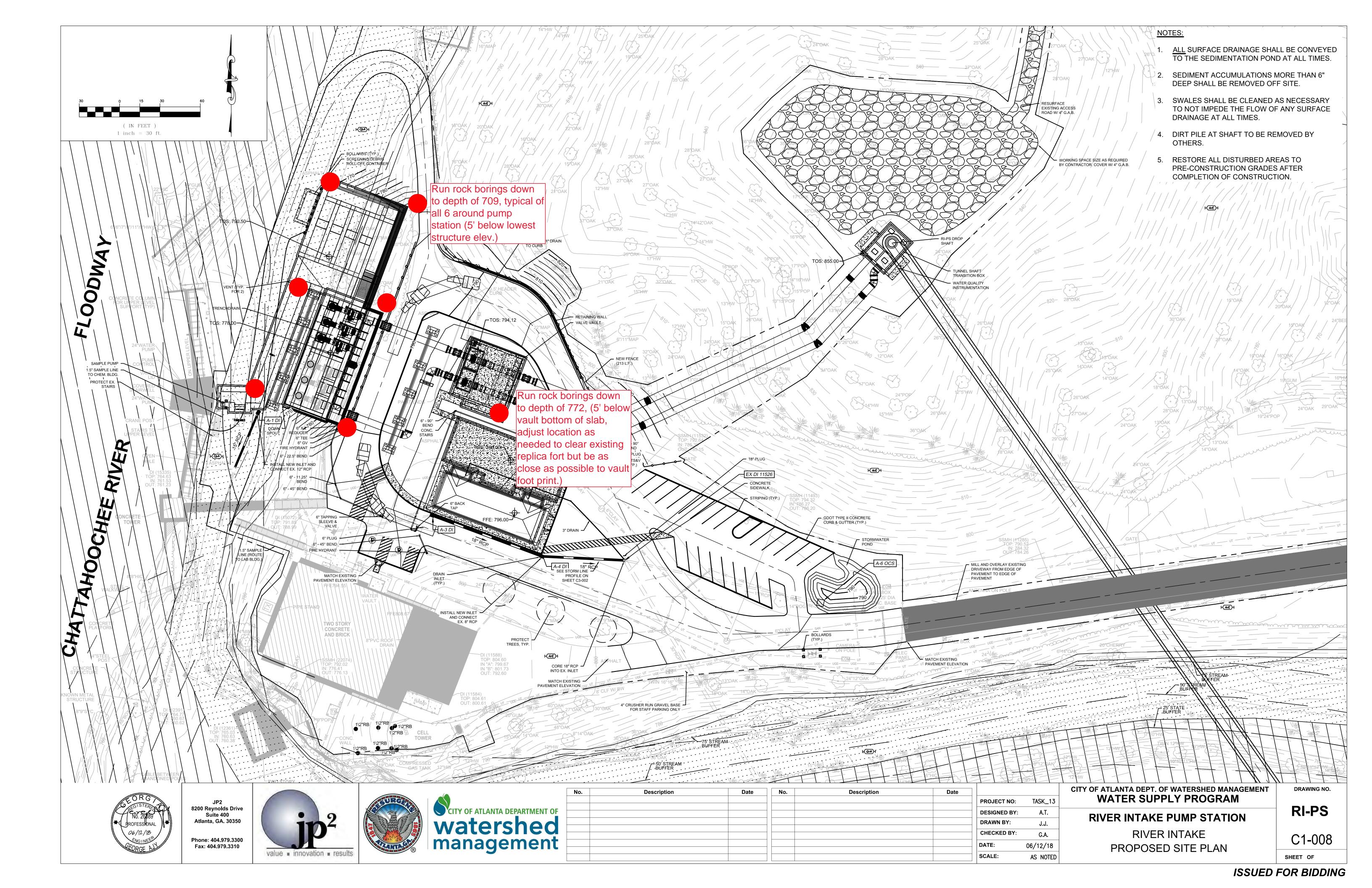
RE: PROCESS

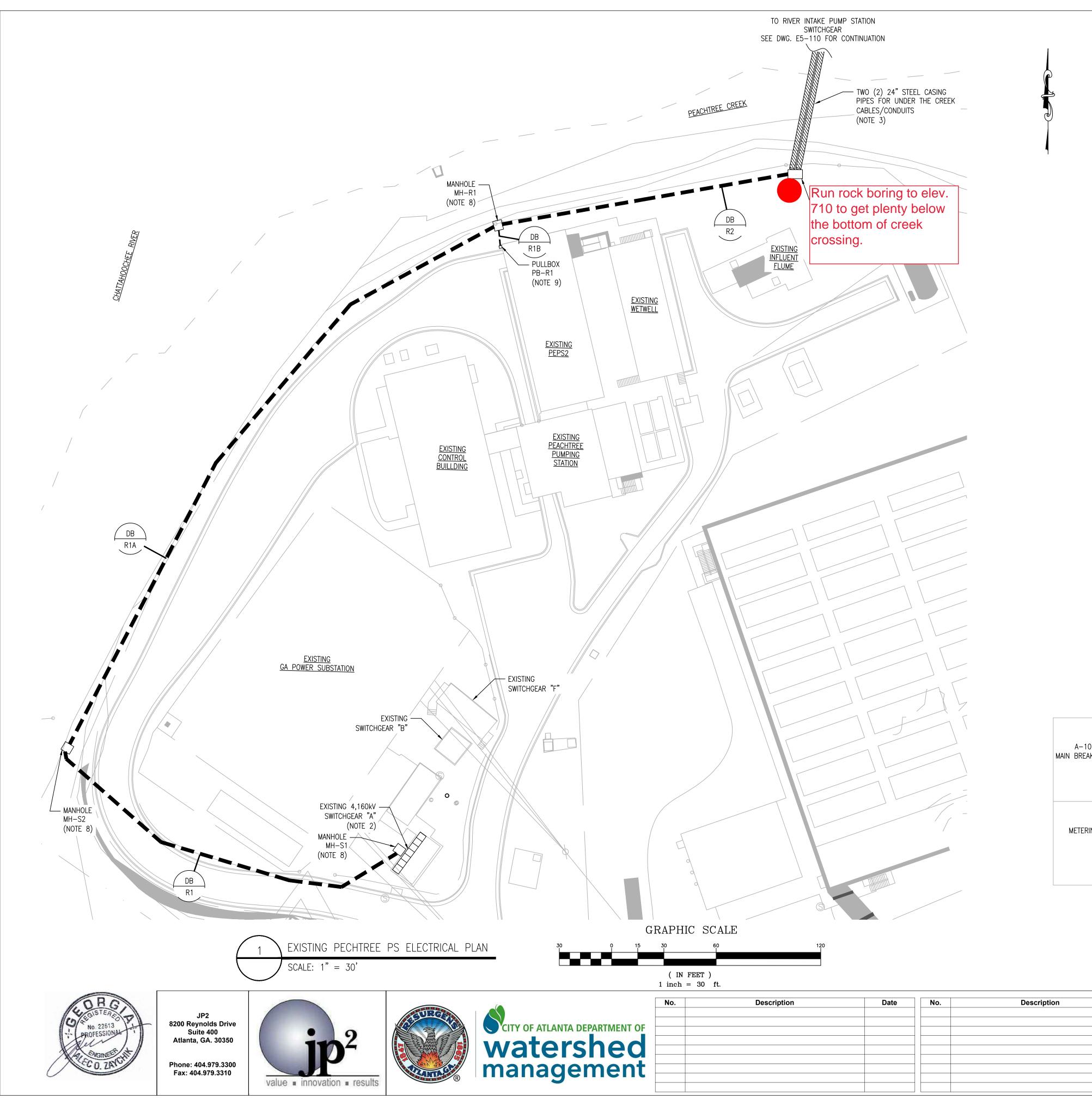
PLANS

C.L.

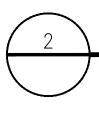
DRAIN

3'-8 1/2"


3' - 0"


3' - 0"

C.L.


PIPE

6'-3 1/2"

A—101 MAIN BREAKER #1	A-101 AUXILIARY LINE VT'S & CPT	A-202 PEPS1 SWGR PUMP #1	SPACE HEATER	SPACE HEATER	A-702 PEPS1 SWGR PUMP # 2	A-701 4MCC-1H PUMP # 4	CPT-S	A—901 MAIN BREAKER #2
METERING	A-302 FINISHED WATER SWGR PUMP #1	A–201 WATER QUALITY LAB (NOTE 2)	A—401 TIE BREAK	A–502 TIE BREAKER	A—801 STEAM PLANT	1200A SPARE (NOTE 2)	A-602 FINISHED WATER SWGR PUMPS #2/3	METERING

Date

PROJECT I
DESIGNED
DRAWN BY
CHECKED
DATE:
SCALE:

ISSUED FOR BIDDING

SHEET OF

10:	TASK 1	WATER SUPPLY PROGRAM - Phase 1		
BY:	RV			
:	RV	RIVER INTAKE PUMP STATION		
BY:	AZ	EXISTING PEACHTREE PS		
6-	12-2018			
	N.T.S.	ELECTRICAL SITE PLAN		

RIVER INTAKE PUMP STATION EXISTING PEACHTREE PS ELECTRICAL SITE PLAN

CITY OF ATLANTA DEPT. OF WATERSHED MANAGEMENT

RI-PS E5-101

DRAWING NO.

EXISTING SWITCHGEAR "A" (10-SWGR-101) LAYOUT

	CONCRETE ENCASED UNDERGROUND DUCTBANK (DETAIL D, DWG. EG-002)
(//////////////////////////////////////	18" STEEL CASING PIPE FOR MEDIUM VOLTAGE CONDUITS

	CONCRETE ENCASED UNDERGROUND DUCTBANK (DETAIL D, DWG. EG–002)
(<i>V777777</i>) –	18" STEEL CASING PIPE FOR MEDILIN VOLTAGE CONDUITS

LEGEND:	
	CONCRETE ENCASED UNDERGROUND DUCTBANK (DETAIL D, DWG. EG-002)

LEGEND:				
	CONCRETE (DETAIL D,	 UNDERGROUND 002)	DUCTBANK	

LEGEND:		
	_	CONCRETE ENCASED UNDERGROUND DUCTBANK (DETAIL D, DWG. EG-002)

WALL. RUN CONDUITS FROM PB-R1 TO THE EXISTING CONTROL PANEL CP-10-101 EXPOSED ALONG THE WALL AFTER ENTERING THE BUILDING. CONTRACTOR SHALL PROPERLY SEAL ALL WALL PENETRATIONS TO BE WATERTIGHT. 10. SEE NOTES 9, 10 AND 12 ON DWG. E6-102.

9. CONTRACTOR SHALL PROVIDE AND INSTALL A NEMA 4X RATED PULLBOX MOUNTED ON THE

6. CONTRACTOR SHALL PROVIDE AND INSTALL UNDERGROUND PULLBOX SIZED IN ACCORDANCE WITH NEC ARTICLE 314.28. SEE DWG. EG-002 DETAIL "A" FOR UNDERGROUND PULLBOX

- 3. CONTRACTOR SHALL PROVIDE AND INSTALL TWO (2) 24" STEEL CASING PIPES BETWEEN MANHOLES MH-R2 AND MH-R3 WITH FIVE (5) 5" CONDUITS EACH SEPARATED BY SPACERS. THE SPACERS SHALL PROVIDE SMOOTH INSTALLATION AND REMOVAL OF EACH
- CONDUIT. USE DIRECT BORING TO GO UNDER PEACHTREE CREEK. THE STEEL CASING DEPTH SHALL BE ADJUSTED AS NEEDED TO AVOID ANY CONFLICTS WITH EXISTING UTILITIES.

INTERFERENCES. THE DUCTBANK DEPTH SHALL BE ADJUSTED AS NEEDED TO AVOID ANY

CONFLICTS WITH EXISTING UTILITIES. THE EXACT LOCATION AND NUMBER OF MANHOLES

SUPPORTS AND ANY OTHER HARDWARE REQUIRED FOR 5kV POWER CABLES CONNECTION

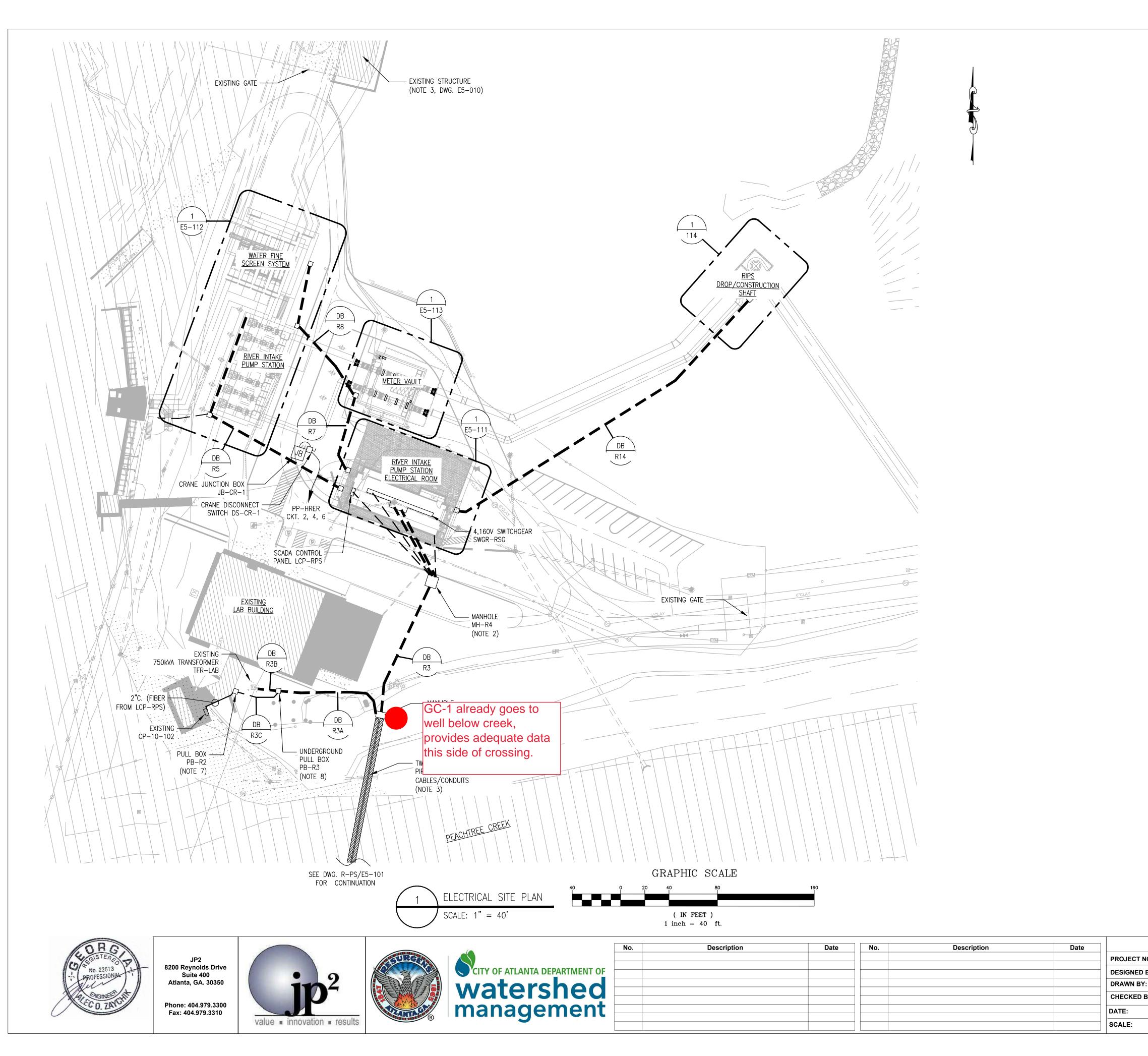
- THE EXACT LOCATION AND NUMBER OF MANHOLES SHALL BE ADJUSTED IN THE FIELD AS NEEDED.

- CONCRETE ENCASED AND STEEL REINFORCED. EACH DUCTBANK SHALL HAVE #4/0 BARE
- 4. ALL UNDERGROUND DUCTBANKS UNDER THE ROADS AND PARKING AREAS SHALL BE COPPER GROUND WIRE (NOT SHOWN FOR CLARITY).

- HSP-1 AND HSP-2 AND ALL ASSOCIATED INSTALLATION HARDWARE, CABLES AND

- CONDUITS. COORDINATE WITH OWNER FOR DISPOSAL OF THE REMOVED EQUIPMENT.
- 5. THE CONTRACTOR SHALL DISCONNECT AND DEMOLISH EXISTING HIGH SERVICE PUMPS
- TO TWO (2) 1,200 AMP CURCUIT BREAKERS IN EXISTING SWITCHGEAR "A".

2. CONTRACTOR SHALL PROVIDE AND INSTALL ALL NECESSARY CONDUITS, PULLBOXES,


SHALL BE ADJUSTED IN THE FIELD AS NEEDED.

NOTES: 1. CONTRACTOR SHALL RUN AN UNDERGROUND CONCRETE ENCASED DUCT BANKS AS SHOWN. THE ROUTING SHALL BE COORDINATED WITH UNDERGROUND UTILITIES TO AVOID ANY

DETAILS.

7. SEE DWG. E5-001 FOR DUCTBANK SECTIONS.

8. SEE DWG. EG-004, DETAIL "B" FOR MANHOLE DETAILS.

NOTES:

- 1. CONTRACTOR SHALL RUN AN UNDERGROUND CONCRETE ENCASED DUCT BANKS AS SHOWN. THE ROUTING SHALL BE COORDINATED WITH UNDERGROUND UTILITIES TO AVOID ANY INTERFERENCES. THE DUCT BANK DEPTH SHALL BE ADJUSTED AS NEEDED TO AVOID ANY CONFLICTS WITH EXISTING UTILITIES. THE EXACT LOCATION AND NUMBER OF MANHOLES SHALL BE ADJUSTED IN THE FIELD AS NEEDED.
- 2. SEE DRAWING EG-004, DETAIL "B" FOR MANHOLE DETAILS.
- 3. SEE DRAWING E5-101 NOTE 3 FOR MORE DETAILS.
- ALL UNDERGROUND DUCTBANKS UNDER THE ROADS AND PARKING AREAS SHALL BE CONCRETE ENCASED AND STEEL REINFORCED. EACH DUCT BANK SHALL HAVE #4/0 BARE COPPER GROUND WIRE (NOT SHOWN FOR CLARITY).
- 5. 4,160V INCOMING POWER CONDUITS SHALL BE CONCRETE ENCASED UNDER THE BUILDING SLAB. COORDINATE THE EXACT CONDUITS ELEVATION WITH THE STRUCTURAL DRAWINGS.
- 6. SEE DWG. E5-001 FOR DUCT BANK SECTIONS.
- 7. CONTRACTOR SHALL PROVIDE AND INSTALL A NEMA 4X RATED PULLBOX MOUNTED ON THE BUILDING WALL. RUN CONDUITS FROM PB-R2 TO THE EXISTING CONTROL PANEL CP-10-102 EXPOSED ALONG THE OUTSIDE WALL. CONTRACTOR SHALL PROPERLY SEAL ALL WALL PENETRATIONS TO BE WATERTIGHT.
- 8. CONTRACTOR SHALL PROVIDE AND INSTALL UNDERGROUND PULL BOX SIZED IN ACCORDANCE WITH NEC ARTICLE 314.28. SEE DWG. EG-002 DETAIL "A" FOR UNDERGROUND PULLBOX DETAILS.
- 9. CONTRACTOR SHALL COORDINATE THE EXACT CRANE JUNCTION BOX LOCATION WITH APPROVED SHOP DRAWINGS.

LEGEND:

	CONCRETE ENCASED UNDERGROUND DUCT BANK (DETAIL D, DWG. EG–002)
<pre></pre>	18" STEEL CASING PIPE FOR MEDIUM VOLTAGE CONDUITS

O :	TASK 1	W
BY:	RV	
	RV	
BY:	AZ	
6	6–12–2018	3
	N.T.S.	

CITY OF ATLANTA DEPT. OF WATERSHED MANAGEMENT WATER SUPPLY PROGRAM - Phase 1

RIVER INTAKE PUMP STATION ELECTRICAL SITE PLAN

RI-PS
E5-110
SHEET OF

DRAWING NO.

APPENDIX VI

Important Information about This Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, clients can benefit from a lowered exposure to the subsurface problems that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed below, contact your GBA-member geotechnical engineer. Active involvement in the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Geotechnical-Engineering Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a given civil engineer will not likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client. *Those who rely on a geotechnical-engineering report prepared for a different client can be seriously misled.* No one except authorized client representatives should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. *And no one – not even you – should apply this report for any purpose or project except the one originally contemplated.*

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read it *in its entirety*. Do not rely on an executive summary. Do not read selected elements only. *Read this report in full*.

You Need to Inform Your Geotechnical Engineer about Change

Your geotechnical engineer considered unique, project-specific factors when designing the study behind this report and developing the confirmation-dependent recommendations the report conveys. A few typical factors include:

- the client's goals, objectives, budget, schedule, and risk-management preferences;
- the general nature of the structure involved, its size, configuration, and performance criteria;
- the structure's location and orientation on the site; and
- other planned or existing site improvements, such as retaining walls, access roads, parking lots, and underground utilities.

Typical changes that could erode the reliability of this report include those that affect:

- the site's size or shape;
- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;
- the elevation, configuration, location, orientation, or weight of the proposed structure;
- the composition of the design team; or
- project ownership.

As a general rule, *always* inform your geotechnical engineer of project changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.*

This Report May Not Be Reliable

Do not rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it; e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, that it could be unwise to rely on a geotechnical-engineering report whose reliability may have been affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If your geotechnical engineer has not indicated an "apply-by" date on the report, ask what it should be*, and, in general, *if you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying it. A minor amount of additional testing or analysis – if any is required at all – could prevent major problems.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface through various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing were performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgment to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team from project start to project finish, so the individual can provide informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, *they are not final*, because the geotechnical engineer who developed them relied heavily on judgment and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* revealed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmationdependent recommendations if you fail to retain that engineer to perform construction observation*.

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a full-time member of the design team, to:

- confer with other design-team members,
- help develop specifications,
- review pertinent elements of other design professionals' plans and specifications, and
- be on hand quickly whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction observation.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note conspicuously that you've included the material for informational purposes only.* To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report, but they may rely on the factual data relative to the specific times, locations, and depths/elevations referenced. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, *only* from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and *be sure to allow enough time* to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnicalengineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. As a general rule, *do not rely on an environmental report prepared for a different client, site, or project, or that is more than six months old.*

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, none of the engineer's services were designed, conducted, or intended to prevent uncontrolled migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, *proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration*. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. *Geotechnical engineers are not buildingenvelope or mold specialists*.

Telephone: 301/565-2733 e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2016 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent

Vol 4 Additional Information River Intake Pump Station

Part 3 Continued

SUBSURFACE EXPLORATION AND GEOTECHNICAL ENGINEERING EVALUATION

City of Atlanta Chattahoochee Water Treatment Plant Improvements Atlanta, Fulton County, Georgia

September 18, 2018

Submitted to: R2T, Inc. 580 W. Crossville Road Suite 101 Roswell, GA 30075

Submitted by: Willmer Engineering Inc. Project No. 71.4311

September 18, 2018

VIA EMAIL

Mr. David Pressler, PE R2T, Inc. 580 W. Crossville Road Suite 101 Roswell, Georgia 30075

SUBJECT: Subsurface Exploration and Geotechnical Engineering Evaluation **City of Atlanta Chattahoochee Water Treatment Plant Improvements** Atlanta, Fulton County, Georgia Willmer Project No. 71.4311

Dear Mr. Preissler:

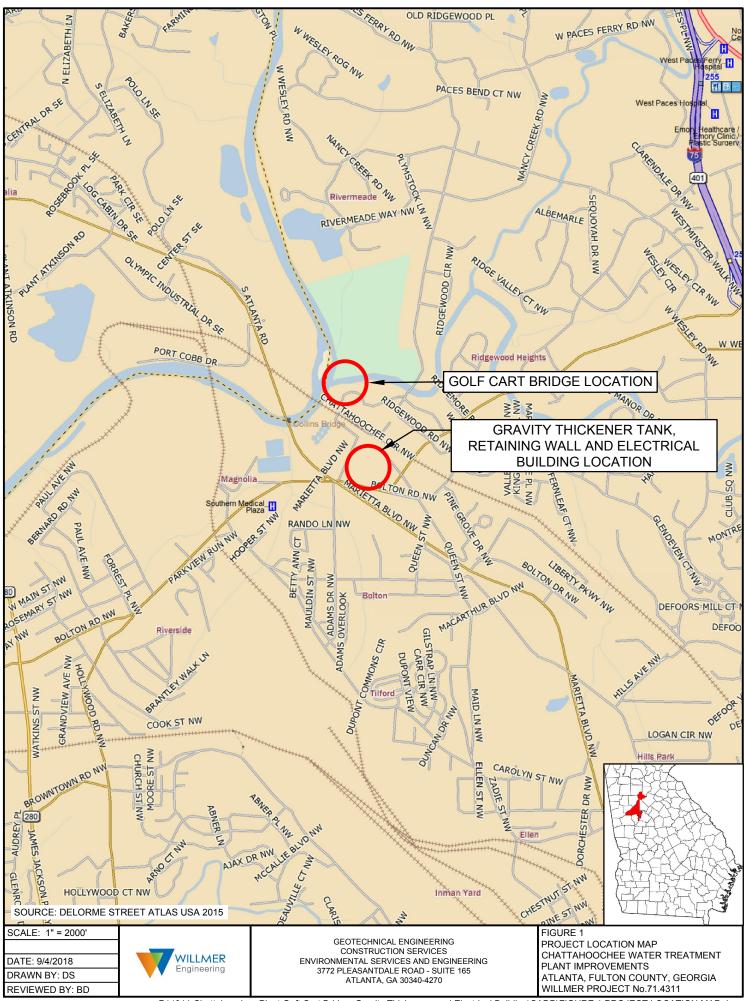
Willmer Engineering Inc. (Willmer) is pleased to provide this report of subsurface exploration and geotechnical engineering evaluation for the proposed City of Atlanta Chattahoochee Water Treatment Plant Improvements project, located in Atlanta, Fulton County, Georgia. This work was performed in general accordance with our Subconsultant Agreement dated July 23, 2018.

This report presents our understanding of the proposed development, the results of our geotechnical exploration, analyses, and evaluation, and our recommendations for the design and construction of the proposed improvements.

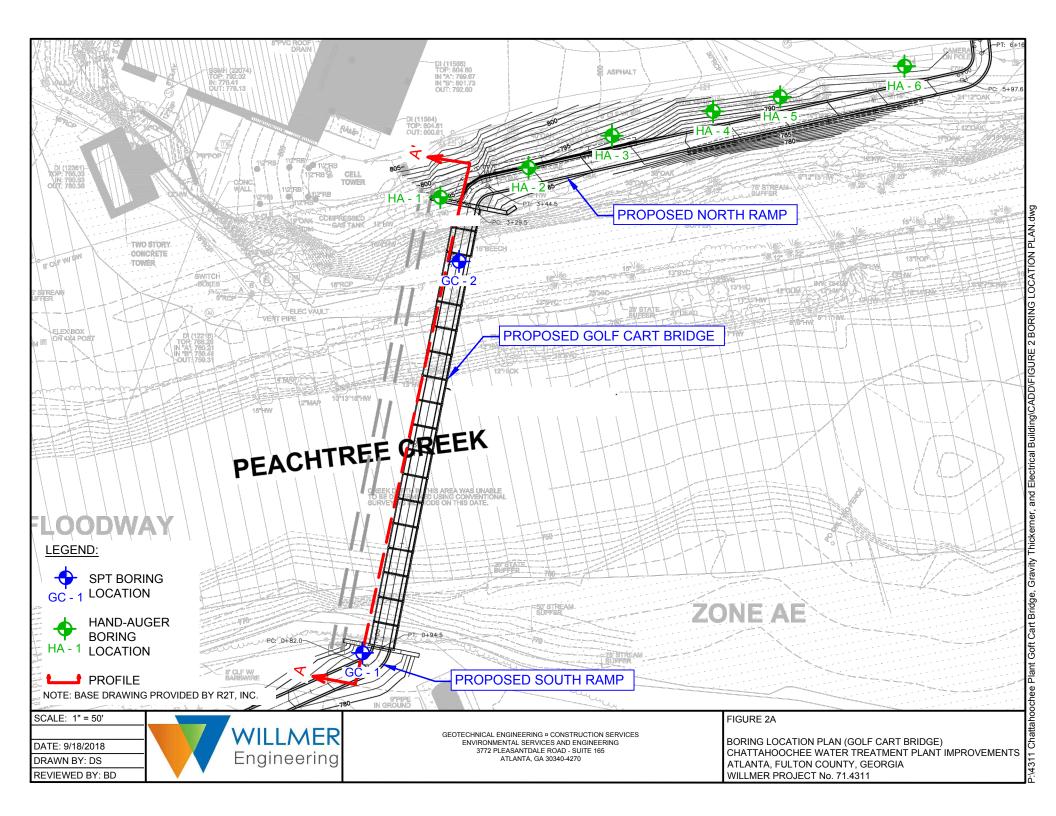
This engineering report is divided into five sections. Section 1 contains the project background information and provides a summary of the objectives and scope of our work. Summaries of the field exploration and laboratory testing programs are provided in Sections 2 and 3, respectively. Section 4 presents a description of the site and regional geologic conditions, and a description of the subsurface conditions based on the results of the field exploration and laboratory testing programs. The results of our geotechnical engineering evaluations and our recommendations are provided in Section 5.

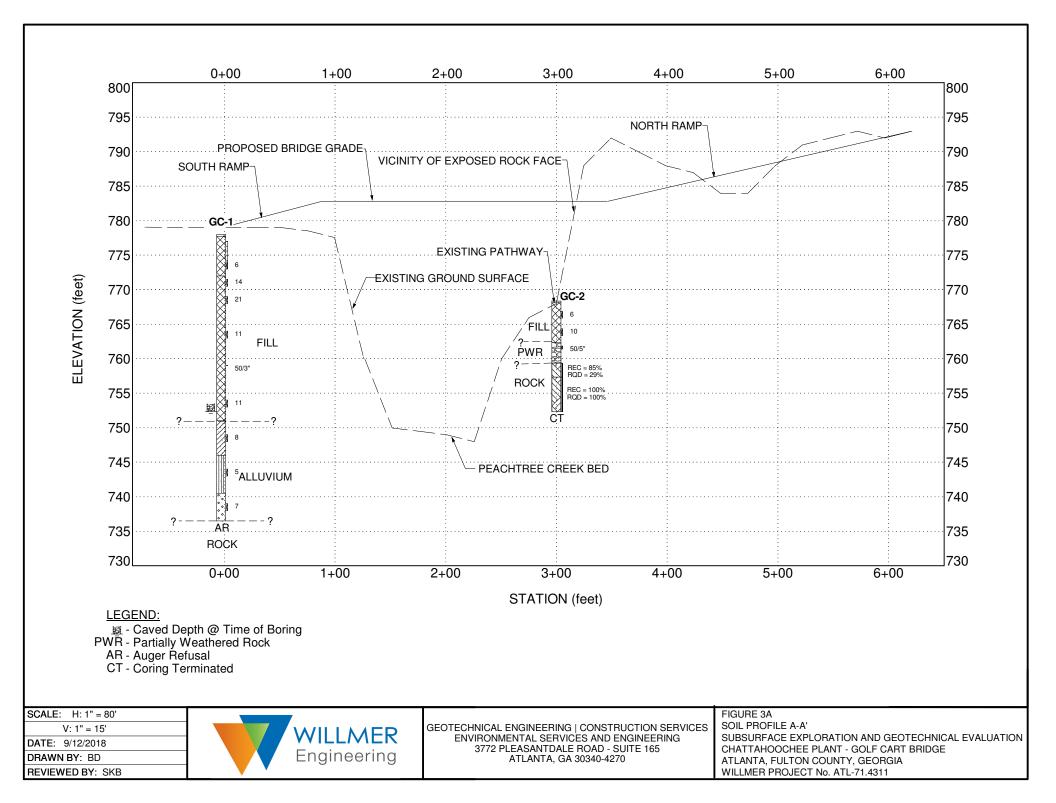
We greatly appreciate the opportunity to be of service to you on this project. Please contact us if you have any questions concerning this report or require further assistance.

Sincerely, WILLMER ENGINEERING INC.

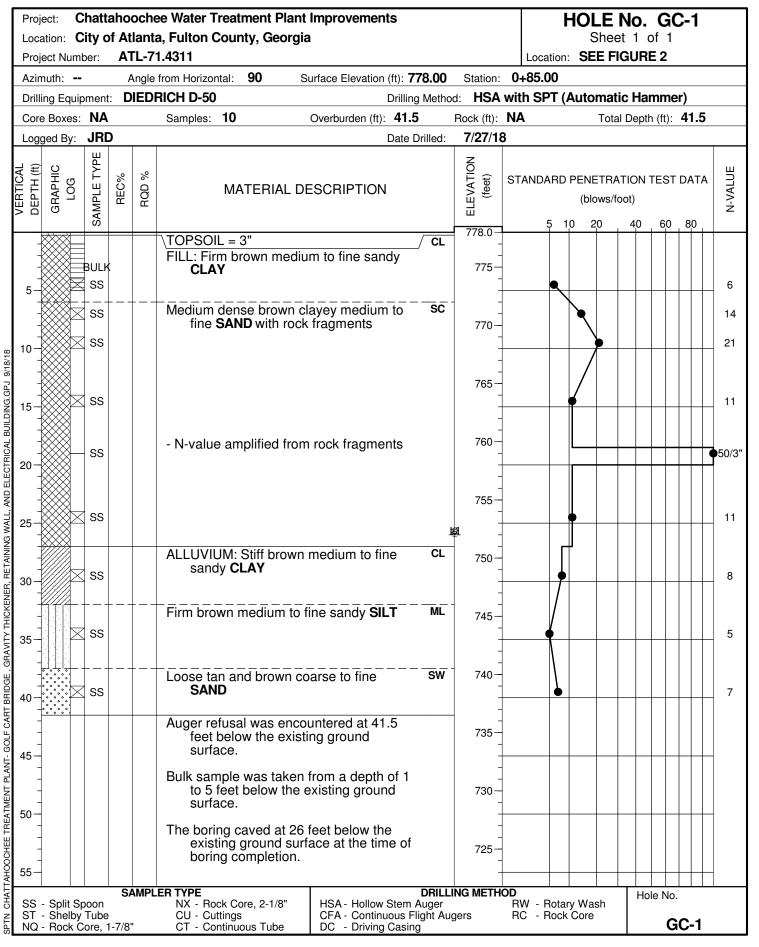

G. Bradford Drew, PE **Project Engineer**

1 Ulllun, P.E.

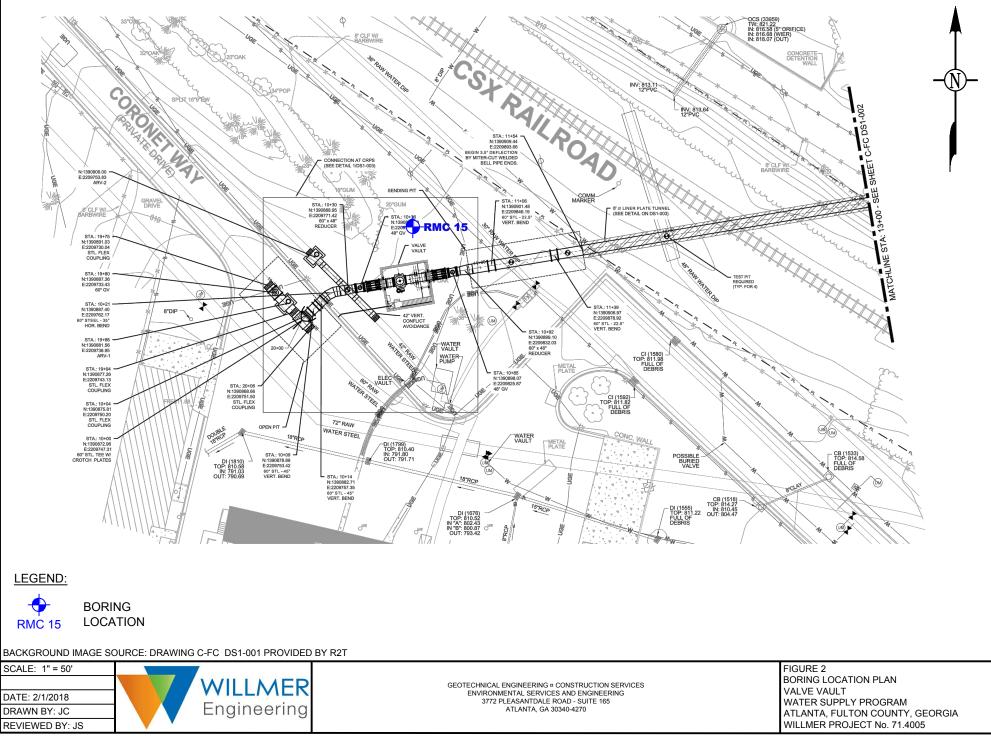

James L. Willmer, PE **Executive Vice President/Principal Consultant**


Sujit & Bhowmilg Sujit K. Bhowmik, PhD, PE

Chief Engineer

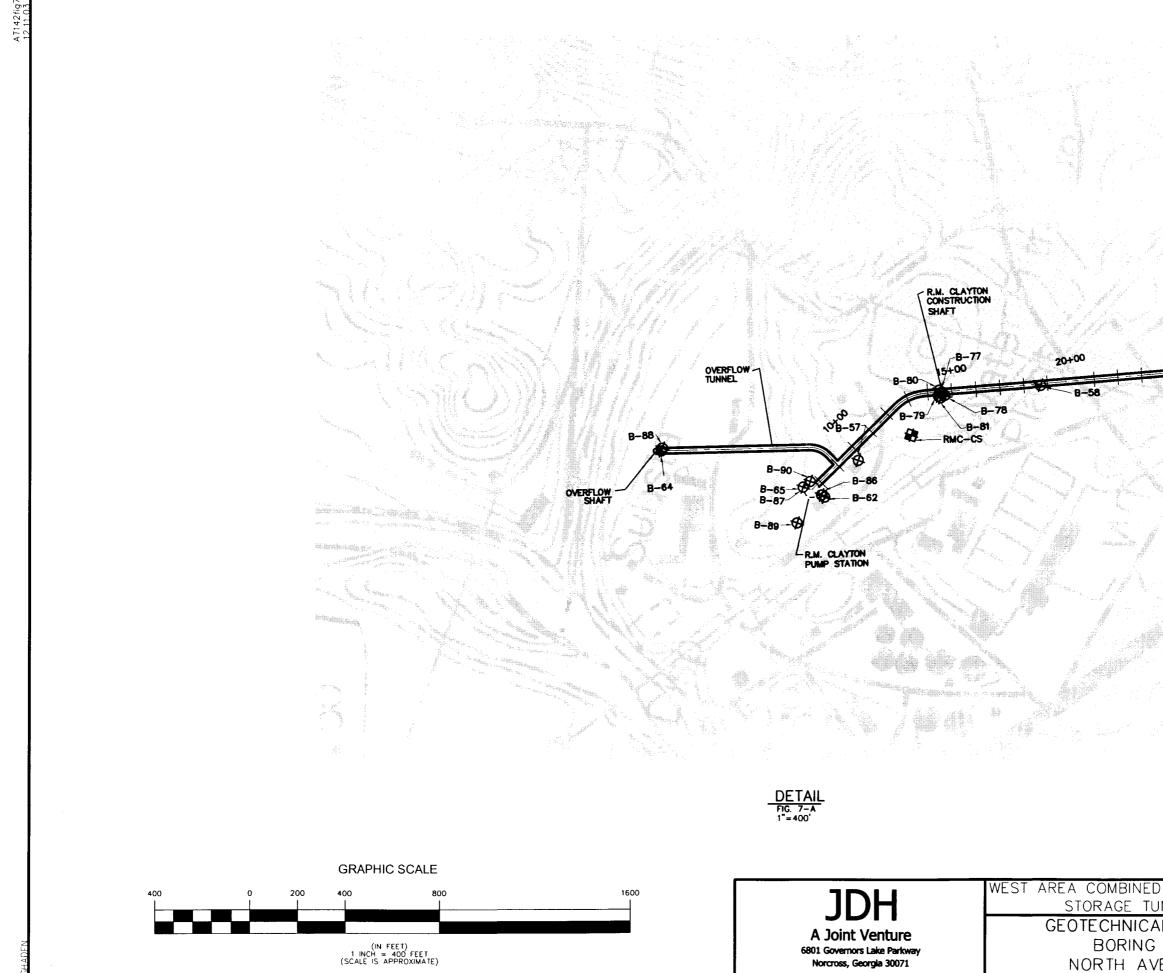


P:\4311 Chattahoochee Plant Goft Cart Bridge, Gravity Thickerner, and Electrical Building\CADD\FIGURE 1 PROJECT LOCATION MAP.dwg


Project:Chattahoochee Water Treatment Plant ImprovementsHOLE No. GC-2Location:City of Atlanta, Fulton County, GeorgiaSheet 1 of 1			
	ocation: City of Atlanta, Fulton County, Georgia		
Project Number: ATL-71.4311 Location: SEE FIGURE 2			
		on: 3+25.00	
Drilling Equipment: DIEDRIC		A with SPT (Automatic Hammer)	
Core Boxes: 1 S Logged By: JRD	amples: 3 Overburden (ft): 9 Rock (f Date Drilled: 7/27	· · · · ·	
VERTICAL DEPTH (ft) GRAPHIC LOG SAMPLE TYPE REC% RQD %	MATERIAL DESCRIPTION		
	OPSOIL = 3" / SC 768.0		
5 SS	ILL: Loose brown and grey clayey 765 medium to fine SAND with rock 765 fragments and root material 765		
	PARTIALLY WEATHERED ROCK: PWR Sampled as very dense grey and tan clayey medium to fine SAND with rock fragments	0 ●50/5"	
NQ 100 100	OCK: Medium to soft light grey and pink medium to coarse grained GRANITE		
	Aedium to soft light grey and pink medium to coarse grained GRANITE suger refusal was encountered at 9 feet below the existing ground surface.	- - - 	
20-	Coring was terminated at 16 feet below the existing ground surface.		
25	lo groundwater was encountered at the time of boring completion.		
30-	740		
	735		
	730		
35- 40- 45- 55- 55- SAMPLER SS - Split Spoon ST - Shelby Tube NQ - Rock Core, 1-7/8"	725		
50-	720		
	715		
SAMPLER SS - Split Spoon ST - Shelby Tube NQ - Rock Core, 1-7/8"	TYPE DRILLING ME NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Augers CT - Continuous Tube DC - Driving Casing	THOD RW - Rotary Wash RC - Rock Core GC-2	

Run #2
Depth: 11'-16'
Recovery = 100%
RQD = 100%

Rock Core Obtained from GC-2 (9' – 16')



Proj		-			Water Supply Program - Phase II		HOLE No. RMC-15
Loca	ation: R	.M. C	-		Plant, Atlanta, GA		Sheet 1 of 1
Proj	ect Numb	er:	71	.400	5		Location: See Figure 1
Azin	nuth:		A	ngle	irom Horizontal: 90 Surface Elevation (ft): 810.00 Station		N/A
Drilli	ng Equip	ment	: C	ME (50X Drilling Method: HS	A Au	utomatic Hammer
Core	e Boxes:	N/A			Samples: 7 Overburden (ft): 25.0 Rock (ft): N/	/A Total Depth (ft): 25.0
Logo	ged By:	GH			Date Drilled: 8/18/	16	
VERTICAL DEPTH (ft)	GRAPHIC LOG	SAMPLE TYPE	REC%	RQD %	MATERIAL DESCRIPTION		TANDARD PENETRATION TEST DATA (blows/foot) 5 10 20 40 60 80
		SS			FILL: Very stiff red and brown medium to CL 810.0		• 27
					fine sandy CLAY with rock fragments RESIDUUM: Very stiff red medium to CL		
		ss			fine sandy CÍ AY	_	
5-					805	-	
		SS					
_ 10—		SS			- becomes mottled black 800	-	
-01					800	-	
- - 15		ss			Very stiff tan and red medium to fine CL sandy CLAY with rock fragments (slightly micaceous) 795	- - -	17
	<i>[[</i>	+			Firm brown and white (mottled black) ML	_	
20-		SS			medium to fine sandy SILT 790	-	8
25 		SS			PARTIALLY WEATHERED ROCK: PWR Sampled as brown, white, and red silty medium to fine SAND with rock fragments	- - - - -	••••••••••••••••••••••••••••••••••••••
- 30 -					Auger refusal was encountered at 25 feet below the existing ground surface. 780	-	
					Groundwater was not encountered at the time of boring completion or 24 hours after boring completion. 775	- - -	
-							
						-	
40-					770	-	
						_	
-						-	
45-					765	1	
- 2/16						-	
50 -					760		
- 65.6							
						_	
55 -					755		
z ST ·	- Split Sp - Shelby	Tube			ER TYPE DRILLING MET NX - Rock Core, 2-1/8" HSA - Hollow Stem Auger CU - Cuttings CFA - Continuous Flight Augers	R	RW - Rotary Wash RC - Rock Core RMC-15
β_NQ.	- Rock C	ure, 1	-7/8		CT - Continuous Tube DC - Driving Casing		

Vol 4 Additional Information River Intake Pump Station

Part 3 Continued

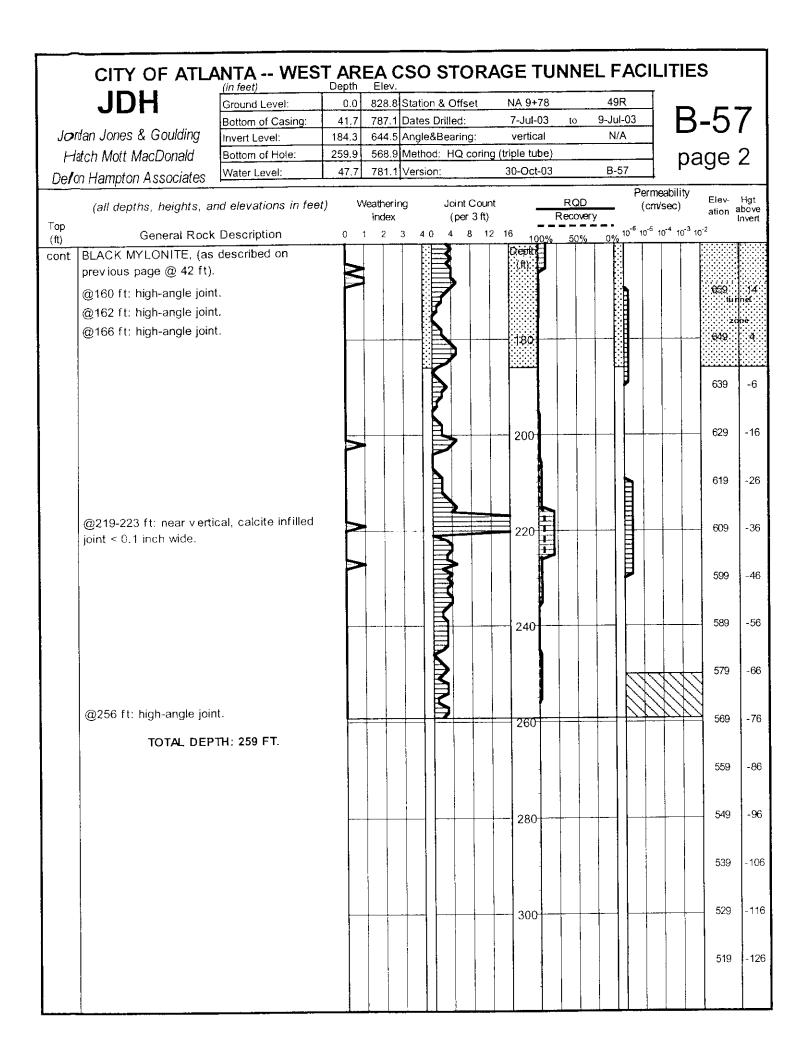
DATE :	DEC 2003
SCALE :	1"=400'
JOB NO .:	2061.042
FIGURE	7-C

SYMBOL NO.	SYMBOL
۰ (BORING ADVANCED TO TUNNEL DEPTH
2 🛧	BORING ADVANCED TO ROCK TERMINATES ABOVE TUNNEL
3 🖶	SOIL BORING

10	
	A second second
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
	1 - C.S.
	11 - P - 4
	de la companya de la
	A. A.
	the start of the start
f part in the	
din da n	
	78
- 1. ₂₀ - 2.	
· · · * ??;;	
	K
s	
	B-10
	- N
25+00	
20	
and a second second	d officers a second
The section	1

CORE BORING B-8 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

	Depth (feet)	Feet Rec	overed	Calculated Results			
Run	Тор	Bottom		Sum of	Run			
Number	of Run	of Run	Total	Pieces >4"	Length	Recovery	RQD	
1	60.0	66.0	5.8	0.0	6.0	97%	0%	
2	66.0	76.0	9.9	8.1	10.0	99%	81%	
3	76.0	86.0	10.0	9.1	10.0	100%	91%	
4	86.0	96.0	10.0	8.5	10.0	100%	85%	
5	96.0	106.0	10.0	7.4	10.0	100%	74%	
6	106.0	116.0	10.0	7.6	10.0	100%	76%	
7	116.0	126.0	9.8	7.1	10.0	98%	71%	
8	126.0	136.0	10.0	8.4	10.0	100%	84%	
9	136.0	146.0	9.9	8.7	10.0	99%	87%	
10	146.0	156.0	9.9	7.9	10.0	99%	79%	
11	156.0	166.0	10.0	8.4	10.0	100%	84%	
12	166.0	176.0	9.9	7.9	10.0	99%	79%	
13	176.0	186.0	10.0	8.9	10.0	100%	89%	
14	186.0	196.0	9.8	9.7	10.0	98%	97%	
15	196.0	200.0	3.7	3.7	4.0	93%	93%	

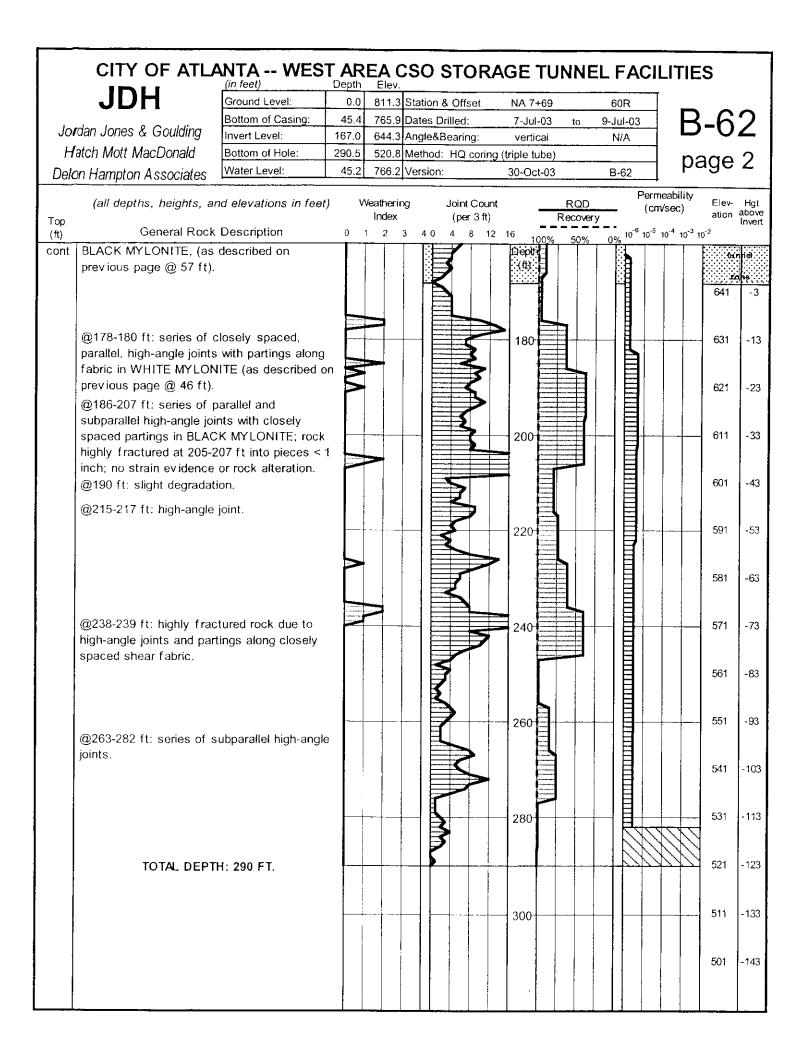

	CITY OF ATLA	NTA WES	T AREA CS	O STORA	AGE TUNN	IEL FACII	ITIES	5	
	JDH	(in feet) Ground Level:	······	tion & Offset	NA 16+12	1809R	_	-	
		Bottom of Casing:	60.0 717.6 Dat	1.12	8-Nov-01 to	8-Nov-01	R	8-8	
Jor	lan Jones & Goulding	Invert Level:		le&Bearing:	vertical	N/A			i
	tch Mott MacDonald	Bottom of Hole:	200.0 577.6 Me	hod: HQ coring	(triple tube)		pa	ge '	1
	n Hampton Associates	Water Level:	20.0 757.6 Ver	sion:	16-Oct-03	B-8	I	<u> </u>	
) Weathering	Joint Count	t RQ		eability	Elev- 1	Hgt
_	(all depths, heights, a	nd elevations in reet	ndex	(per 3 ft)	Reco	very	√sec)		bove nvert
Top (ft)	General Rock	Description	0 1 2 3	40 4 8 12	16 <u>100% 50</u>	<u>% 0%</u> ^{10⁻⁶ 10⁻⁵}	10 ⁻⁴ 10 ⁻³ 10 ⁻	2 T	
0	SOIL.			Image: Section of the sectio				768 758	122
								748 738	102 92
								728	82
60	<i>(auger refu</i> WHITE MYLONITE, wh aphanitic to very fine g	ite to light gray; rained, strong interr	nal		60 Not C		Tested ve Here	718	72
	shearing fabric, dark gr compositional layers of to 10 ft thick present a [comprise 15-20% of in	BLACK MYLONITE t random spacing terv al]; generally			80			708 698	62 52
	contains at least 2 high partings along internal s @ 60-120 ft: Transition	shearing fabric.						688	42
				13	100			678	32
	@ 109-110 ft: high-ang weathering on surfaces	i.	ht					668	22 ooel
	@ 115-116 ft: foliatior	ເງຍາແອະເ		K				658 z< 648	, 12 ine
								638	-8
								628	- 18

CITY OF ATLA	ANTA WES	T AREA CS	SO STOR	AGE TUNN	IEL FACIL	ITIES	
JDH	Ground Level:		ation & Offset	NA 16+12	1809R		
	Bottom of Casing:		ates Drilled:	8-Nov-01 to		B-8 page	5
Jordan Jones & Goulding	Invert Level:		ngle&Bearing:	vertical	N/A		
Hatch Mott MacDonald	Bottom of Hole:	200.0 577.6 M 20.0 757.6 V	ethod: HQ coring	16-Oct-03	B-8	page	2
Delon Hampton Associates	Water Level:	20.0[101.0]V				eability	
(all depths, heights, a	nd elevations in fee	et) Weathering	Joint Cour		<u>D</u> (cm.	, , Elev-	Hgt above
Top (ft) General Rock	Description	0 1 2 3	(per 3 ft) 40 4 8 12	2 16 <u>100% 50</u>	40 ⁻⁶ 10 ⁻⁵		Invert
cont WHITE MYLONITE, (as	described on prev	ious		Depth (ft)			
page @ 60 ft).						608	-38
@ 165 ft: foliation joints	Ş.	an an ann an Ann An Anna an Ann An Anna an Anna Anna					-30
@ 182-187 ft: foliation	fracture, slight			180		598	-48
weathering on surfaces						588	-58
TOTAL DEP	PTH: 200 FT.			200		578	-68
Notes:						568	-78
(1) Borehole B-8 was fo W-8 on the City of Atlai measures Plan. CSO Pr the Consolidated Storag	nta CSO Remedial e-Design Report foi	r		220		558	-88
(May 2002).	,					548	-98
				240		538	- 108
						528	-118
				260		518	-128
						508	-138
				280		496	3 - 148
						480	3 - 158
				300-		47	3 - 168
						46	8 - 178

CORE BORING B-57 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

	Depth	(feet)	Feet Re	covered	Calculated Results			
Run	Тор	Bottom		Sum of	Run			
Number	of Run	of Run	Total	Pieces >4"	Length	Recovery	RQD	
1	41.7	45.9	3.8	2.4	4.2	90%	57%	
2	45.9	55.9	9.6	7.6	10.0	96%	76%	
3	55.9	65.9	10.0	9.5	10.0	100%	95%	
4	65.9	75.9	10.0	10.0	10.0	100%	100%	
5	75.9	85.9	10.0	10.0	10.0	100%	100%	
6	85.9	95.9	10.0	9.8	10.0	100%	98%	
7	95.9	105.9	10.0	9.4	10.0	100%	94%	
8	105.9	115.9	10.0	10.0	10.0	100%	100%	
9	115.9	125.9	10.0	10.0	10.0	100%	100%	
10	125.9	135.9	10.0	8.5	10.0	100%	85%	
11	135.9	145.9	10.0	10.0	10.0	100%	100%	
12	145.9	155.9	10.0	9.1	10.0	100%	91%	
13	155.9	165.9	10.0	9.0	10.0	100%	90%	
14	165.9	175.9	10.0	9.9	10.0	100%	99%	
15	175.9	185.9	10.0	10.0	10.0	100%	100%	
16	185.9	195.9	10.0	10.0	10.0	100%	100%	
17	195.9	205.9	10.0	9.8	10.0	100%	98%	
18	205.9	215.9	10.0	9.6	10.0	100%	96%	
19	215.9	225.9	9.3	8.0	10.0	93%	80%	
20	225.9	235.9	10.0	9.6	10.0	100%	96%	
21	235.9	245.9	10.0	10.0	10.0	100%	100%	
22	245.9	255.9	10.0	9.7	10.0	100%	97%	
23	255.9	259.9	4.0	4.0	4.0	100%	100%	

	CITY OF ATLA										2	
		(in feet)	Depth	Elev.					- ACILI		0	
	JDH	Ground Level:	0.0		tion & Offse		IA 9+78		9R		E	7
Jor	dan Jones & Goulding	Bottom of Casing: Invert Level:	41.7 184.3	787.1 Dat	es Drilled: ile&Bearing		7-Jul-03 vertical		ul-03 I/A	B	-5	1
	atch Mott MacDonald	Bottom of Hole:	259.9		hod: HQ c							
	on Hampton Associates	Water Level:	47.7	781.1 Ver)-Oct-03	B	-57	μa	ge	ł
				•				-	Permea	ability		
-	(all depths, heights, a	nd elevations in feet,) V	Veathering Index	Joint (per			RQD Recovery	(cm/s		Elev- ation	Hgt above Invert
Top (ft)	General Rock	Description	0		40 4 8	,		50% 0%	6 10 ⁻⁶ 10 ⁻⁵ 10	4 10 ⁻³ 10 ⁻		inven
0	SOIL (not sampled).			······································			Depth	ANN A	\overline{NN}	W		Τ
								$\mathbb{N}\mathbb{N}$		W		
								NNN	$\mathbb{N}\mathbb{N}$	NN.	819	174
								$\mathbb{N}\mathbb{N}$		NN.		
			· · · ·				20	$\mathbb{N}\mathbb{N}$		NN.	809	164
							\overline{N}	$\mathbb{N}\mathbb{N}$		NN.		
								MMM	\mathbb{N}	W	700	
								MMM	M	W	799	154
								Not Cored		W		
40	(auger refus	al @ 42 ft)	· · · · · · · · · · · · · · · · · · ·					vbove Here	Not Te		789	144
42	BLACK MYLONITE, gra								Above	Here		
	to very fine grained, wit	-					9 1				779	134
	shearing fabric and loca white lenses, parts along		0				1				/10	
	perpendicular to core ax						2					
	layers of WHITE MYLO	NITE up to 10 ft	F				60				769	124
	thick present at random	spacing [comprise -		+			Ų					
	15% of interval].										759	114
	@42-52 ft: Transition Zo		ľ		12							
	@51 ft: crushed zone; h											
	@57-61 ft: series of par	+	s	++			80				749	104
	@71 ft: high-angle joint.											
											739	94
	@95 ft: high-angle joint.										729	84
					K		100				729	04
							2					
	@110 fty bigh angle join	+									719	74
	@110 ft: high-angle join	ι.			1							
							100				709	64
							120					
							E				699	54
	@134-137 ft: series of I	high-angle joints.					F					
	@139-149 ft: quartz v ei		6	<u>-</u>			140				689	44
	of interval]; highly shea											
							B				070	
							E				679	34
	@152-155 ft: series of : joints.	subparallel high-angle	e				Ē					
	jouris.											Lesses.



CORE BORING B-62 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

,

	Depth	(feet)	Feet Re	covered	Calculated Results			
Run	Төр	Bottom		Sum of	Run			
Number	of Run	of Run	Total	Pieces >4"	Length	Recovery	RQD	
1	45.5	46.5	0.4	0.0	1.0	40%	0%	
2	46.5	56.5	6.2	0.2	10.0	62%		
3	56.5	66.5	10.0	4.5	10.0	100%	45%	
4	66.5	76.5	10.0	8.0	10.0	100%	80%	
5	76.5	86.5	10.0	9.5	10.0	100%	95%	
6	86.5	96.5	10.0	9.2	10.0	100%	92%	
7	96.5	106.5	10.0	9.8	10.0	100%	98%	
8	106.5	116.5	10.0	9.5	10.0	100%	95%	
9	116.5	126.5	10.0	9.4	10.0	100%	94%	
10	126.5	136.5	10.0	9.6	10.0	100%	96%	
L1	136.5	146.5	10.0	9.0	10.0	100%	90%	
12	146.5	156.5	10.0	9.8	10.0	100%	98%	
13	156.5	166.5	10.0	9.0	10.0	100%	90%	
14	166.5	176.5	10.0	9.6	10.0	100%	96%	
15	176.5	186.5	10.0	6.3	10.0	100%	63%	
16	186.5	196.5	10.0	3.8	10.0	100%	38%	
17	196.5	206.5	10.0	4.0	10.0	100%	40%	
18	206.5	216.5	10.0	7.9	10.0	100%	79%	
19	216.5	226.5	10.0	7.3	10.0	100%	73%	
20	226.5	236.5	10.0	6.1	10.0	100%	61%	
21	236.5	246.5	10.0	4.0	10.0	100%	40%	
22	246.5	256.5	10.0	9.8	10.0	100%	98%	
23	256.5	266.5	10.0	8.4	10.0	100%	84%	
24	266.5	276.5	10.0	7.5	10.0	100%	75%	
25	276.5	286.5	10.0	9.9	10.0	100%	99%	
26	286.5	290.5	4.0	4.0	4.0	100%	100%	

	CITY OF ATLA	NTA WES	T ARE	ACS		AGE TUN	NEL FACI	LITIES
	JDH	(in feet)	Depth	Elev.			T	
	JUII	Ground Level: Bottom of Casing:			tion & Offset es Drilled:	NA 7+69 7-Jul-03 to	60R 9-Jul-03	DGO
Jor	dan Jones & Goulding	Invert Level:			le&Bearing:	vertical	N/A	B-62 page 1
Ha	atch Mott MacDonald	Bottom of Hole:			hod: HQ coring			nago 1
	n Hampton Associates	Water Level:		766.2 Ver		30-Oct-03	B-62	page i
				-			Perm	eability
-	(all depths, heights, ar	nd elevations in feel	,	athering Index	Joint Coun (per 3 ft)			Vsec) Elev- Hgt ation above Invert
Top (ft)	General Rock	Description	0 1	2 3	,	7 16		10 ⁻⁴ 10 ⁻³ 10 ⁻²
0 46 57	SOIL (not sampled). (auger refuse) WHITE MYLONITE, whith aphanitic to very fine gr internal shearing fabric, along this fabric. @46-60 ft: Transition Zcc BLACK MYLONITE, met aphanitic to very fine gr internal shearing fabric, along this fabric; compo WHITE MYLONITE (as of [comprise 15% of interv present at random spaci @74 ft: high-angle joint. @93-97 ft: series of sub joints. @114 ft: high-angle joint	e to light gray; ained, with strong rock typically parts ne. dium gray to black; ained, with strong rock typically parts sitional layers of described @ 46 ft) al] up to 25 ft thick ng.		 A. S. A. S.		60 80 100 120	Here	801 157 791 147 781 137 781 137 771 127 rested 761 117 751 107 741 97 731 87 721 77 711 67 691 47 681 37 671 27
	@144 ft: high-angle joint @144-146 ft: fractured, @152 ft: high-angle joint	but not weathered.			Y WAR			671 27

CORE BORING B-77 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

	Depth	(feet)	Feet Rec	covered	Ca	Iculated Results	;
Run	Тор	Bottom		Sum of	Run		
Number	of Run	of Run	Total	Pieces >4"	Length	Recovery	RQD
1	20.0	26.0	0.4	0.0	6.0	7%	0%
2	26.0	36.0	8.8	0.4	10.0	88%	4%
3	36.0	46.0	9.8	8.6	10.0	98%	86%
4	46.0	56.0	10.0	8.5	10.0	100%	85%
5	56.0	66.0	10.0	7.8	10.0	100%	78%
6	66.0	76.0	9.9	9.2	10.0	99%	92%
7	76.0	86.0	10.0	8.3	10.0	100%	83%
8	86.0	96.0	9.8	7.8	10.0	98%	78%
9	96.0	106.0	10.0	9.7	10.0	100%	979
10	106.0	116.0	10.0	9.4	10.0	100%	949
11	116.0	126.0	10.0	9.7	10.0	100%	979
12	126.0	136.0	10.0	9.7	10.0	100%	979
13	136.0	146.0	10.0	9.0	10.0	100%	909
14	146.0	156.0	10.0	9.6	10.0	100%	969
15	156.0	166.0	10.0	9.5	10.0	100%	959
16	166.0	176.0	10.0	10.0	10.0	100%	1009
17	176.0	186.0	10.0	8.9	10.0	100%	89
18	186.0	196.0	10.0	10.0	10.0	100%	100
19	196.0	206.0	10.0	9.7	10.0	100%	97
20	206.0	216.0	10.0	9.7	10.0	100%	97
21	216.0	226.0	10.0	10.0	10.0	100%	100
22	226.0	236.0	10.0	9.2	10.0	100%	92
23	236.0	246.0	10.0	9.3	10.0	100%	93
24	246.0	256.0	10.0	9.3	10.0	100%	93
25	256.0	266.0	9.8	9.8	10.0	98%	98
26	266.0	276.0	10.0	8.9	10.0	100%	89
27	276.0	286.0	9.7	8.3	10.0	97%	83
28	286.0	296.0	10.0	8.8	10.0	100%	88
29	296.0	306.0	10.0	7.1	10.0	100%	71
30	306.0	316.0	10.0	5.7	10.0	100%	57
31	316.0	320.0	4.0	4.0	4.0	100%	100

JDH Jordan Jones & Goulding Helch Mct MacDonalk Image 1000 Image 10000 Image 10000 Image 10000 Image 10000 Image 10000 Image 10000 Image 100000 Image 100000 Image 100000 Image 1000000 Image 10000000 Image 10000000000 Image 1000000000000000000000000000000000000		CITY OF ATLA	ANTA WES		EA CS	SO ST	ORA	GE TU	NNEL	FACILI	TIE	s	,
Jordan Jones & Goulding Hatch Mott MacDonald Bottom of Capacy invertices ¹ 2014. 64:50 Angebberrog: mint (100 mint 100 mint bottom of Hole: 320.04 8:30 Angebberrog: mint (100 mint 100 mint bottom is 200.04:03 B-777 page 1 Cell depths, heights, and elevations in feet/ (10) General Rock Description 0 1 2.3 4.6 1.2 B-77 Parmability (mint 200 Bernoving (10) Permability (10) Bernoving (10) Be		JDH		1		ation & Off	set	NA 14+60		8R			
Hatch Mott MacDonald between Hatel: 320.0 520.6 Memory in the constitution of the constitant of the constitution of the constitution of the constenee of th			Bottom of Casing:	20.0							R	_7	7
Delon Hampton Associates Water Level: 41.2 B052 (Version: B0-CM B-77 Page 1 Top (B) General Rock Description 0 1 2 0 4 12 10 Receiver of the second of								_		N/A		-1	1
Contrast profit Assublished and elevations in facil Transition Weathering including Joint Contrast (including) Parametric figure 10 Solit (not sampled): 0 1 2 3 40 4 8 12 16 1000 Record of an and a figure Record of a figure Record of an and a figure Record of a fi							coring (t	riple tube)			na	INA	1
Top (a) General Rock Description (b) General Rock Description (c) SOIL (not sampled). 0 1 2 3 40 4 s 12 15 100 00 00 00 00 00 00 00 00 00 00 00 00	Del	on Hampton Associates	Water Level:	41.2	805.2 Ve	rsion:		30-Oct-03	E	3-77	pe	.90	L
(h) General Rock Description 0 1 2 3 4 8 12 16 1000 000	.	(all depths, heights, a	nd elevations in feet) V	. .								
0 SOIL (not sampled). 0 SOIL (not sampled). 0 Nit Cord (0) Nit Cord (0) 836 191 20 ELACK MYLONITE, medium gray to black; aphantile to very fine grained, strong internal shearing fabric, core typically parts along the low to mid angle fabric. 916 171 WHTE MYLONITE, present as thin to medium tick compositional layers (comrise 102:0% of entire borehole). 916 171 @20-36 ft: parts along internal shearing fabric and along mid angle cross-cutting joints. 920 906 151 @20-36 ft: ransition Zone. @20-36 ft: sarts of high-angle joints. 966 778 141 @46-47 ft: high-angle joint. @66-36 ft: near vertical joint. 800 776 121 @46-45 ft: series of high-angle joints. 800 776 121 @48-90 ft: blocky zone. 100 776 111 @134-149 ft: WHITE MYLONITE comprises > 50% of interval. 100 776 11		General Rock	Description	0 1			•			10 ⁻⁶ 10 ⁻⁵ 10 ⁻¹	د. ۱. ۲۰ ^۰ ۵ ۱۰		
20 Lage reliast @ 20 /l Not Currer Not Currer Not Tester 628 191 20 BLACK MYLONITE, medium gray to black; aphentic to very fine grained, strong internal shearing fabric, core typically parts along the boto or mid angle fabric. Not Tester 628 181 20 WHITE MYLONITE, present as thin to medium thick compositional layers [cornise 10.20% of entite borehold]. 00	<u> </u>							100%	50% 0 X X				r i
20 ILACK MYLONITE, medium gray to black: aphenitic to very fine grained, strong internal shearing fabric, core typically parts along the low to mid angle fabric. No Testicit 856 181 WHITE MYLONITE, present as thin to medium thick compositional ayers [comrise 10-20% of entire borehole]. 20 No Testicit 866 151 @20-51 ft: parts along internal fabric and along mid angle fabric. 0									XXX		W		
20 ILACK MYLONITE, medium gray to black: aphanitic to very fine grained, strong internal shearing fabric, core typically parts along the low to mid angle fabric. Not Cored 20 Not Cored 20 Not Tested Above Here, 20 Not									XXX		NV.	826	101
20 BLACK MYLONITE, medium gav to black; aphanitic to very fine grained, strong internal shearing fabric, core ty pically parts along the low to orid angle fabric. Not Testion 856 191 WHITE MYLONITE, present as thin to medium thick compositional layers [comrise 10-20% of entire borehole]. 200 Jone Here Not Testion 816 171 @20-31 ft: parts along internal shearing fabric and along mid angle fabric. 40 40 40 60 60 60 766 161 @20-31 ft: parts along internal shearing fabric and along mid angle cross-cutting joints. @20-31 ft: ransition Zone. 60 776 161 @44-45 ft: very closely spaced parting along internal shear fabric. @44-65 ft: series of high-angle joints. 80 776 131 @44-65 ft: series of parallel, high-angle joints. @80-90 ft: blocky zone. 100 776 111 @454-50 ft: whiTE MYLONITE comprises > 50% of interval. 140 776 111									1XXI		XX	030	191
20 BLACK MYLONITE, medium gray to black; aphantitic to very fine grained, strong internal shearing fabric, core typicelly parts along the low to mid angle fabric. 20 Not Tested town the medium gray to black; aphantitic to very fine grained, strong internal shearing fabric, core typicelly parts along the medium thick compositional layers (cornise 10-20% of entire borehole). 806 161 (20-05 ff tr) parts along internal shearing fabric and along mid angle cross-cutting joints. 90-06 766 151 (20-05 ff tr) parts along internal shearing fabric and along mid angle cross-cutting joints. 90-06 766 161 (20-05 ff tr) parts along internal shear fabric. 90-06 766 161 (20-05 ff tr) parts along internal shear fabric. 90-06 766 161 (20-05 ff tr) parts along internal shear fabric. 90-06 766 161 (20-05 ff tr) parts along internal shear fabric. 90-06 766 131 (20-05 ff tr) parts along internal shear fabric. 90-06 766 131 (20-05 ff tr) parts along internal shear fabric. 90-06 766 131 (20-05 ff tr) parts along internal shear fabric. 90-07 766 131 (20-06 ff tr) parts along internal shear fabric. 90-07 766 131 (20-07)		(auger refus	al @ 20 ft)								W		
aphantitic to very fine grained, strong internal shearing fabric, core typically parts along the low to mid angle fabric. WHITE MYLONITE; present as thin to medium thick compositional layers [comrise 10-20% of entire borehole]. @20-36 ft: parts along internal shearing fabric. @20-36 ft: parts along internal shearing fabric. @20-36 ft: parts along internal shearing fabric. @40-47 ft: high-angle joint; surrounding rock pinternal shear fabric. @40-47 ft: high-angle joint; @80-81 ft: series of high-angle joints. @80-81 ft: series of parallel, high-angle joints. @89-90 ft: blocky zone. @134-149 ft: WHITE MYLONITE comprises > 50% of interval.	20							20			XV	826	181
low to mid angle fabric. WHITE MYLONITE comprises WHITE MYLONITE MYLONITE comprises 816 10-20% of entire borehole]. 00 020-36 ft: parts along internal shearing fabric and along mid angle cross-cutting joints. 020-61 ft: Transition Zone. 024-43 ft: very closely spaced parting along internal shear fabric. 046-47 ft: high-angle joint; surrounding rock pitted. 0255-58 ft: near vertical joint. 066-65 ft: series of high-angle joints. 0269-80 ft: blocky zone. 00 02134-149 ft: WHITE MYLONITE comprises 100 02134-149 ft: WHITE MYLONITE comprises 140													
WHITE MYLONITE comprises WHITE MYLONITE comprises			ically parts along th	e 📑		1 📑					ΤÌ		.
medium thick compositional layers [comrise 10-20% of entire borshole]. 806 161 @20-36 ft: parts along internal shearing fabric and along mid angle cross-cutting joints. 806 161 @20-61 ft: Transition Zone. 9242-43 ft: very closely spaced parting along internal shear fabric. 806 161 @42-43 ft: very closely spaced parting along internal shear fabric. 966-58 ft: series of high-angle joints. 776 131 @64-65 ft: series of parallel, high-angle joints. 806 161 776 121 @89-90 ft: blocky zone. 100 776 111 @134-149 ft: WHITE MYLONITE comprises > 50% of interval. 140 776 61		low to mid angle fabric.										816	171
10-20% of entire borehole). @20-36 ft: parts along internal shearing fabric and along mid angle cross-cutting joints. 000000000000000000000000000000000000													
(P20-36 ft: parts doing internal shearing fabric and along mid angle cross-cutting joints. (P20-26 ft: Transition Zone. (P20-26 ft: Transition Zone. (P42-43 ft: very closely spaced parting along internal shear fabric. (P42-43 ft: ingh-angle joint; surrounding rock pitted. (P36-58 ft: near vertical joint. (P36-58 ft: series of high-angle joints. (P36-65 ft: series of parallel, high-angle joints. (P30-90 ft: blocky zone. (P36-90 ft: blocky zone. (P134-149 ft: WHITE MYLONITE comprises (P134-149 ft: WHITE MYLONITE comprises)								40				806	161
fabric and along mid angle cross-cutting joints. @20-61 ft: Transition Zone. 796 151 @42-43 ft: very closely spaced parting along internal shear fabric. @46-47 ft: high-angle joint; surrounding rock pitted. 60 796 141 @56-58 ft: near vertical joint. @64-65 ft: series of high-angle joints. 80 706 121 @80-80 ft: blocky zone. 80 706 121 @89-90 ft: blocky zone. 100 776 111 @134-149 ft: WHITE MYLONITE comprises > 50% of interval. 140 706 51			•				PI						
joints. @20-61 ft: Transition Zone. @42-43 ft: very closely spaced parting along intermal shear fabric. @46-47 ft: high-angle joint; surrounding rock pitted. @66-65 ft: series of high-angle joints. @80-81 ft: series of parallel, high-angle joints. @89-90 ft: blocky zone. @89-90 ft: blocky zone. @134-149 ft: WHITE MYLONITE comprises > 50% of interval.			-								42		
@42-43 ft: very closely spaced parting along internal shear fabric. @46-47 ft: high-angle joint; surrounding rock pitted. @56-58 ft: near vertical joint. @64-65 ft: series of high-angle joints. @80-81 ft: series of parallel, high-angle joints. 80 @89-90 ft: blocky zone. 100 @89-90 ft: blocky zone. 100 @134-149 ft: WHITE MYLONITE comprises 100 > 50% of interval. 140			o oroco octaing									796	151
internal shear fabric. @46-47 ft: high-angle joint; surrounding rock pitted. @64-65 ft: series of high-angle joints. @80-81 ft: series of parallel, high-angle joints. @89-90 ft: blocky zone. @89-90 ft: blocky zone. @134-149 ft: WHITE MYLONITE comprises > 50% of interval. ************************************		@20-61 ft: Transition Zo	ne.	M		K		民					
internal shear fabric. @46-47 ft: high-angle joint; surrounding rock pitted. 776 131 @56-58 ft: near vertical joint. @64-65 ft: series of high-angle joints. 80 766 121 @89-90 ft: blocky zone. 80 776 111 @89-90 ft: blocky zone. 100 746 101 @8134-149 ft: WHITE MYLONITE comprises > 50% of interval. 140 766 51		@42-43 ft: very closely	spaced parting alon	,╞╪				60				786	141
pitted. @56-58 ft: near vertical joint. @64-65 ft: series of high-angle joints. @80-81 ft: series of parallel, high-angle joints. @89-90 ft: blocky zone. 76 111 @89-90 ft: blocky zone. 100 100 776 13 @134-149 ft: WHITE MYLONITE comprises 140 > 50% of interval. 140		1 T T T T T T T T T T T T T T T T T T T											
@56-58 ft: near vertical joint. %6-65 ft: series of high-angle joints. 80 766 121 @80-81 ft: series of parallel, high-angle joints. 80 766 121 @89-90 ft: blocky zone. 766 101 0 736 91 100 736 91 120 726 81 0 726 11 0 120 726 81 0 716 71 0 716 71 0 706 51			nt; surrounding rock				1)				$\overline{\mathbf{x}}$		
@64-65 ft: series of parallel, high-angle joints. 80 766 121 @89-90 ft: blocky zone. 766 101 0 100 746 101 736 91 120 726 81 0 120 726 81 0 120 726 81 0 120 726 81 0 120 726 81 0 120 726 81 0 120 726 81 120 726 81 120 726 81 120 726 81 726 81 716 726 81 716 726 81 716 726 81 706 80 140 140 80 61 696								日日				776	131
@89-90 ft: blocky zone. @89-90 ft: blocky zone. @100		-						【】		目二			
@89-90 ft: blocky zone. @89-90 ft: blocky zone. @100								。目上				766	121
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 2000 11: blocky 2016. 756 111 766 111 776 91 776 71 776 91 776 91 776 91 776 91 776 71 776 91 776 91 706 91 706 91 706 91 706 91		@80-81 ft: series of para	allel, high-angle joints	s. 🛃				「目」					121
@134-149 ft: WHITE MY LONITE comprises > 50% of interval. 2000 11: blocky 2016. 756 111 756 11 756 11 7								目					
@134-149 ft: WHITE MYLONITE comprises > 50% of interval.		@89-90 ft: blocky zone.									++	756	111
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. (@134-149 ft: WHITE MYLONITE comprises) (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					11			E					
@134-149 ft: WHITE MYLONITE comprises > 50% of interval.								100			1	746	404
@134-149 ft: WHITE MYLONITE comprises > 50% of interval.								100				740	
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. (@134-149 ft: WHITE MYLONITE comprises) (0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							, ,	- A		目(
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 706 61 696 51								- #				736	91
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 706 61 696 51												·	
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 706 61 696 51		ha:											
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 696 51								120			+	726	81
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 696 51													
@134-149 ft: WHITE MYLONITE comprises > 50% of interval. 696 51	1.13											716	71
> 50% of interval.	100	@134_140 ft. W/ UTE LAV		1		B							
		> 50% of interval	LONLE comprises					A					
		and the second of the second s			┾╍┼╶┤			140	┼┼┥		+-1	706	61
				- 3				F					
												696	51
@159-160 ft: parallel, high-angle joints.													
		@159-160 ft: parallel, high	1-angle joints.			K							

	CITY OF ATLA	NTA WEST	r AR Depth	EA C	so s	TOR/		INNE	LFAC		ES		
	JDH	(in feet) Ground Level:	0.0		Station &	Offset	NA 14+6		8R		_		_
		Bottom of Casing:	20.0		Dates Dril		20 Aug-0	03 to	26-Aug-03		3-	77	
Jord	dan Jones & Goulding	Invert Level:	201.4		Angle&Be		virtical		<u>N/A</u>	_			- 1
	atch Mott MacDonald	Bottom of Hole:	320.0			HQ coring	tub	1/2		- r	bag	ge 2	2
	n Hampton Associates	Water Level:	41.2	805.2	Version:		30-Oct-0		B-77				
	(all depths, heights, a	nd elevations in feet,) v	Veatherin Index	ng J	ioint Coun (per 3 ft)	t –	ROD Recover	74	ermeabilit (cm/sec)	-	ation al	Hgt bove tvert
Top (ft)	General Rock	Description	0	1 2	3 4 0	4 8 12	2 16 100	<u>% 50%</u>	0% 10-6	10 ⁻⁵ 10 ⁻⁴ 10) ⁻³ 10 ⁻²		
cont	BLACK MYLONITE, (as previous page @ 20 ft).						Depth (ft)						
	@171-186 ft: WHITE M > 50% of interval.	YLONITE comprises	;								2	676	31
	@178-181 ft: closely sp	baced partings along					- 180				-	666	21.
	internal shearing fabric.]				nin	net
												888	
												848	
							200						30000
	@207-211 ft: WHITE M > 50% of interval.	YLONITE comprises				>						636	-9
							- 220-		+			626	-19
	@227-231 ft: WHITE M > 50% of interval.	YLONITE comprise	s M									616	-29
	@234-235 ft: closely s low-angle internal shear						240					606	-39
	@243 ft: foliation joints	s cross cutting joint.	P									596	-49
	@253-265 ft: series of angle joints cross-cutti	sub-parallel, high- ng shearing fabric.										586	-59
	@254-317 ft: weatherin high-angle, widely space	ng predominantly alo	ng E				260					000	
	@284-285 and 309 ft f closely spaced and cn	ractures are more										576	-69
							280-					566	-79
	@282-306 ft: series of			P				 					
	@283-285 ft: zone of angle and mid-angle jo internal shearing fabric	ints with partings alo										556	-89
							300		┼┤┝			546	-99
	@311-320 ft: WHITE I ~50% of the interval.	MYLONITE comprise				NV			ť			536	-109
	TOTAL DE	PTH: 320 FT.		1		5							

CORE BORING B-78 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

	Depth	(feet)	Feet Rec	overed	Ca	lculated Resul	ts
Run Number	Top of Run	Bottom of Run	Total	Sum of Pieces >4''	Run Length	Recovery	RQD
1	15.0	16.0	0.9	0.0	1.0	90%	0%
2	16.0	25.5	3.2	0.5	9.5	34%	5%
3	25.5	35.5	6.8	3.1	10.0	68%	31%
<u>J</u>	35.5	45.5	10.0	9.5	10.0	100%	95%
5	45.5	55.5	10.0	8.2	10.0	100%	82%
6	55.5	65.1	9.6	9.0	9.6	100%	94%
7	65.1	75.1	10.0	8.9	10.0	100%	89%

	CITY OF ATLA	NTA WES			CS	O ST	ORA	GE	TUNN	IEL	FACI	LITIE	S	5
	JDH	Ground Level:	0.0	-	_	ion & Of	fset	NA 14	+70	1	5R			
		Bottom of Casing:	15.0	1		es Drilled		27-Au			Aug-03		8-7	Q
	rdan Jones & Goulding	Invert Level:	200.7			le&Beari		verti			N/A) – (O
I H	latch Mott MacDonald	Bottom of Hole:	75.1		.6 Met	hod: NO	coring					n	age	1
Dek	on Hampton Associates	Water Level:	N/A	N/A	Vers	sion:		30-Oc	<u>t-03</u>	В	-78		aye	
	(all depths, heights, an	nd elevations in feel		Weathe	ring		t Count		RC			neability	Elev-	Hgt
Тор	tan doprind, noighta, an		/	Inde	5		er 3 ft)		Reco	wery		n/sec)	ation	above
(ft)	General Rock	Description	0	1 2	3 4	0 4	8 12	16 1	00% 50	<u> </u>	% 10 ⁻⁶ 10 ⁻⁵	10 ⁻⁴ 10 ⁻³	10 ⁻²	
0	SOIL.								$\langle N \rangle \langle$	M		\overline{M}	1	
			E					= (ft)	$\mathbb{N}\mathbb{N}$	$\langle N \rangle$		XX	1	
	(auma anh)ar								Nord			M	836	191
15			_=						Above	Here		<u>NR</u>	1	
	BLACK MYLONITE, med aphanitic to very fine gra		Ē	See No	te 1 🖃	E See	Note 1	<u> </u>				\mathcal{W}	826	181
	strong internal shearing f		, ⋿									\mathcal{M}		
	parts along this fabric at											XN		
	along mid to high angle jo											M	816	171
	MYLONITE present as si stringers [comprise < 1%							3		3		XX)	1	
		-	F					40-				M.	806	161
	@15-35 ft: Transition Zon weathered rock and close		L									NN.		
	some with silt and clay in	• • •										$\mathcal{N}\mathcal{N}$		- 23
	shearing fabric.							-				XX)	796	151
	@46-48 ft: near vertical j	joint.										AN).		
	X	K 3						60			\mathbb{N}	MM	786	141
												\mathcal{W}		
									à		Not	Tested N	ł	
	@68-71 ft: rock more we numerous internal short f				7							XX)	776	131
	healed, some broken.	racture, mostly			+-+		+				$\overline{\mathcal{W}}$	$\overline{V}\overline{V}$	1	
								80-					766	121
	TOTAL DEPT	H: 75 FT.												
				8				1						
													756	111
	Notes:													
	(1) 5 ft of soil and core lo	ss between interva						100-					746	101
	of 16-25 ft, but do not kn													```
	because soil seams varie							1						
	interval. Soil gaps and co	ore loss at intervals											736	91
	25-29 and 34 ft.													
								- 120-					726	81
								120						[~]
													716	71
		531						140-					706	61
				×				140					100	
													696	51
	1.11													
	6.03													

CORE BORING B-79 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

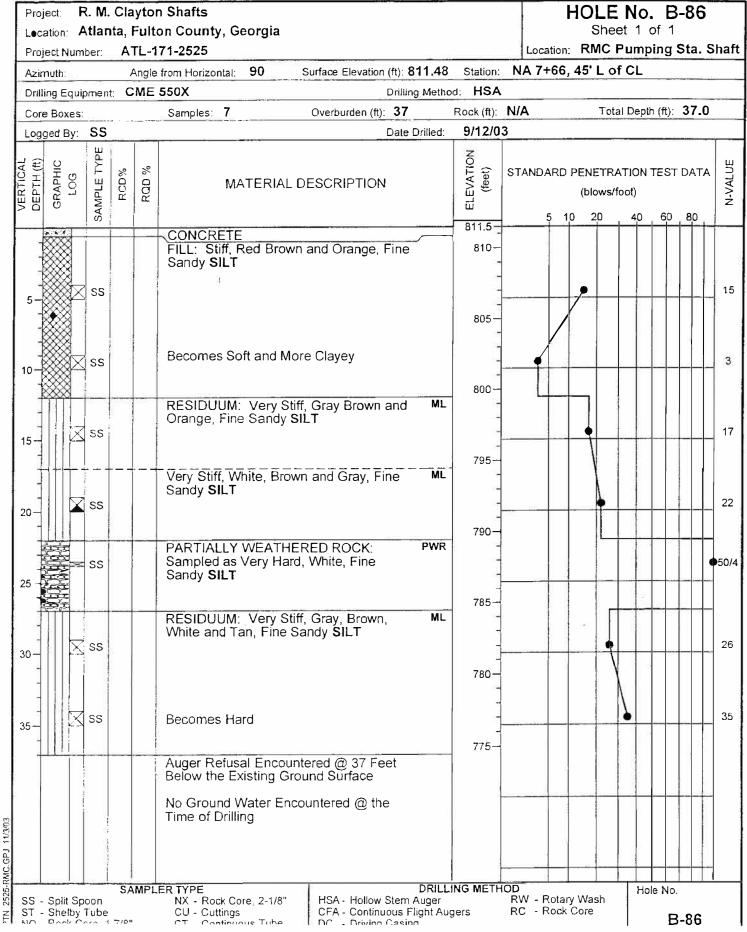
MALITA TO YTO

	Depth	(feet)	Feet Rec	overed	Ca	lculated Result	5
Run Number	Top of Run	Bottom of Run	Total	Sum of Pieces >4''	Run Length	Recovery	RQD
1	14.6	20.1	2.3	0.3	5.5	43%	6%
2	20.1	30.1	3.5	0.0	10.0	35%	0%
	30.1	39.8	8.6	1.7	9.7	89%	17%
4	39.8	50.1	9.8	1.3	10.3	95%	12%
5	50.1	60.1	8.9	0.7	10.0	89%	7%
6	60.1	70.1	10.0	5.4	10.0	100%	54%
	70.1	80.1	10.0	5.3	10.0	100%	53%
	80.1	90.1	9.9	5.5	10.0	99%	55%
	90.1	100.1	10.0	7.3	10.0	100%	73%
10	100.1	110.1	10.0	9.2	10.0	100%	92%

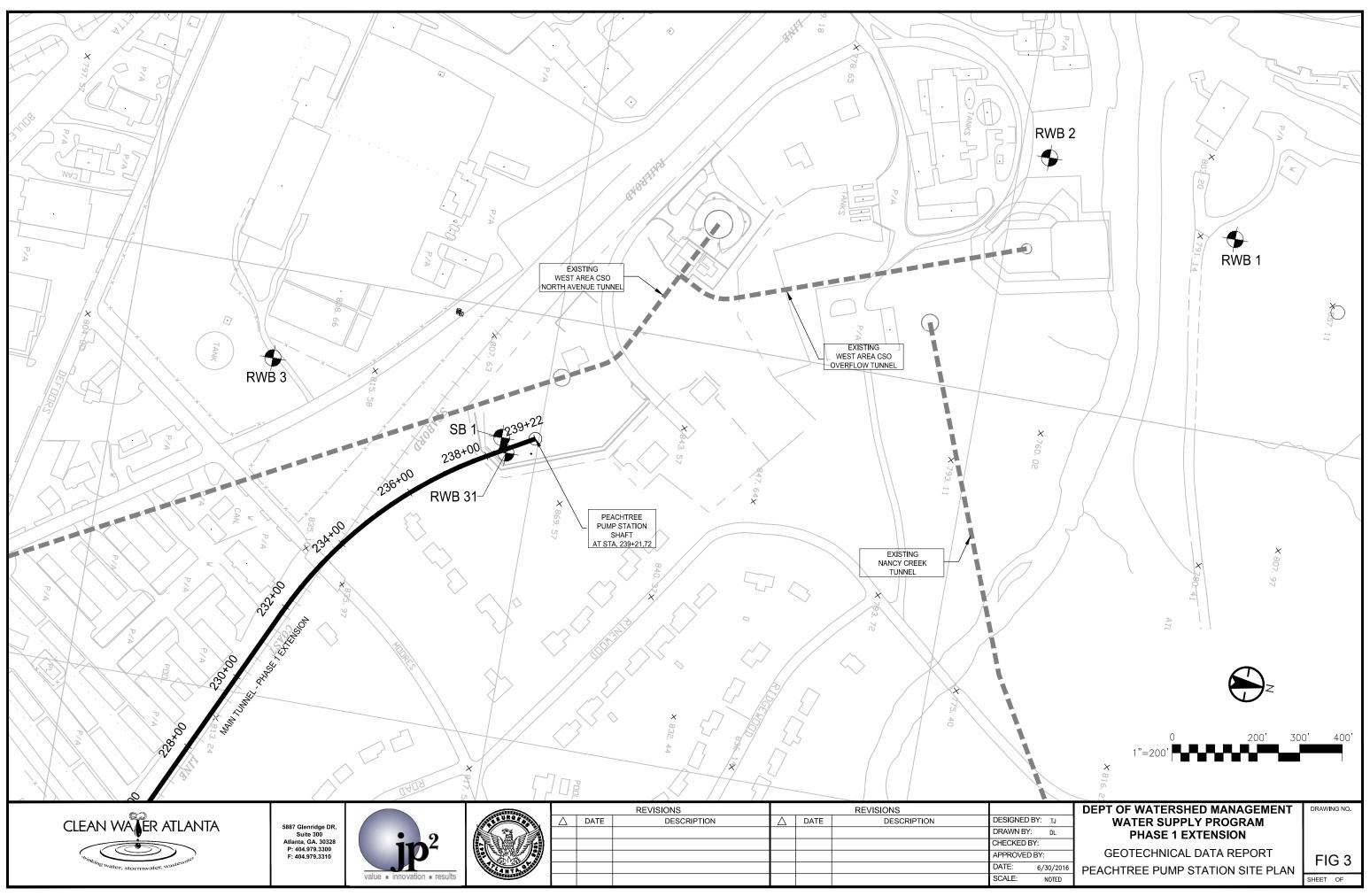
JDH	(in feet) Ground Level:	Depth Elev. 0.0 846.4 St	ition & Offset	NA 14+43	17R		_
	Bottom of Casing:	14.6 831.8 Da	tes Drilled:	28-Aug-03 to 28	-Aug-03	3-7	Q
rdan Jones & Goulding	Invert Level:	201.4 645.0 Ar	gle&Bearing:	vertical	N/A		
latch Mott MacDonald	Bottom of Hole:	110.1 736.3 M	thod: NQ coring		n	age	1
on Hampton Associates	Water Level:	N/A N/A Ve	rsion:	30-Oct-03	B-79 P	ugo	
(all depths, heights, ar	d elevations in feet) Weathering	Joint Count	RQD	Permeability (cm/sec)	Elev-	Hg
General Rock		Index 0 1 2 3	(per 3 ft)	Recovery	** 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻⁵	ation	abo Inve
SOIL.	Description			10 100% 50%		N.	Т
					3 MMM (3	
				E VUXX	1 [26/3/4	836	19
(auger refusa	al @ 15 <i>f</i> i)			Above Here	3 14144	т К	"
BLACK MYLONITE, med		E See Note 1	E See Note 1			3	
aphanitic to very fine gr				20		826	1
to strong internal shear f					<u> </u>	Ž –	
parts along this low-angle	• • • •					3	
@18-63 ft: Transition Zo			╡╞═╧╧		7 <i>12131</i> 7	816	1
stained and weathered, o	-					2	
partings and mid to high						806	
surfaces locally pitted.				40	$\Box D D D D D D D D D D D D D D D D D D D$	J 806	1
@38-40 ft: near vertical	joint, with closely					3	
spaced partings along st					220303	796	1
@45-53 ft: highly fractu						7	
high-angle joints and close						Я	
along internal shear fabri				60		786	1
@55-60 ft: highly fractu					INNY	8	ľ
high-angle joints and close					Not Tested	3	
fabric partings.	-				18000	776	1
@60-63 ft: near vertical	ioint.					Я	
@75-84 ft: highly fractu	•	。目				1	
of high-angle joints, space				80	+0000	766	1
apart; closely spaced pa						3	
shearing fabric.	ango along micindi					7	
@81-110 ft: thin to medi	um compositional					756	1
layers of WHITE MYLO	•					7	
10% of interval.	an in comprise .					Y	1
@89 ft: highly fractured	zone.			- 100	7 <i>121</i> 27	746	
@95-99 ft: near vertical						7	
healed @ 95-97.5 ft; cor						1 736	1
97.5-99 ft.	- herre en leine G					7 ~~	
@101-102 ft: en echelor	vertical joints.						
			┨┠━┽╍┼╴┼	120	┥┠━┼╍┼╶┼	726	8
TOTAL DEPT	H: 110 FT.					716	7
Notes:							
(1) No recovery between	the intervals of 15	┝┟┼┼┼	┨┢╌╁╴┼╶┼	- 140	┨┠╶┟╍┾╍┽	- ///	1
18, 20-27, and 30-31 ft.							
Thursday I wanted						696	
							10.00

CORE BORING B-80 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS

	Depth	(feet)	Feet Re	covered	Ca	culated Results	5
Run Number	Top of Run	Bottom of Run	Total	Sum of Pieces >4"	Run Length	Recovery	RQD
1	33.1	40.3	7.2	0.5	7.2	100%	7%
2	40.3	50.3	10.0	7.1	10.0	100%	71%
3	50.3	60.3	10.0	7.4	10.0	100%	74%
4	60.3	70.3	10.0	9.1	10.0	100%	91%
5	70.3	80.3	10.0	9.3	10.0	100%	93%


	JDH	(in feet) Ground Level:	Dep		Station & Offset	NA 14+4	9	8L	[
	JDH	Bottom of Casing:			Dates Drilled:	1-Sep-0		1-Sep-03	R.	-8	ſ
Jor	an Jones & Goulding	Invert Level:	205		Angle&Bearing:	vertical		N/A			
	tch Mott MacDonald	Bottom of Hole:	80).3 769.7	Method: NQ cor	ing			pa	ge	-
	n Hampton Associates	Water Level:	N/A	N/A	Version:	<u>30-Oct-0</u>	3	<u>B-80</u>	p a	90	
10101		-d -touctions in for	. 41	Weatherin	Joint Co	tor to	RQD		meability	Elev-	
	(all depths, heights, a	na elevations in tee	3()	Index	(per 3 i		Recovery		π/sec)	ation	
xp t)	General Rock	Description	0	1 2	40 4 8	12 16 100	% 50%	0% 10 6 10 5	10" 10" 10	2	_
	SOIL.					Depth (ft)	$\mathcal{M}\mathcal{M}$	$\Im \boxtimes$	MM.		
						≣ ‴∖		$\otimes \otimes \otimes$	MM		1
			Ē				3010	$\otimes \otimes$	\mathbb{N}	840	
							XXX	\otimes \otimes	XXX		
						20	MM	\otimes \otimes	3000	830	
							MM	\boxtimes	MM.		
							Not Core	38	MM		1
	(auger refus	al @ 33 ft)	E				Above Her		M	820	
33	BLACK MYLONITE, me	dium gray to black	;						\mathcal{M}		
	aphanitic to very fine g	rained, weak to stru	ong			40			\mathcal{M}	810	
	internal shearing fabric,	core typically part	S			∌ ∎			XXX		
	along this fabric at low to orientation.	o medium angle							300	000	
	@33-68 ft: Transition Z	one, characterized	by						MM)	800	
	pitted core, stained joint	s and closely space	ced						MM		
	partings along shearing					60		$\square \boxtimes$	M	790	
	@37-38 ft: high-angle jo										
	@46-47 ft: high-angle jo	lint.							N N N	780	
										100	
									300	ĺ	
	@80 ft: 3-inch composi	tional layer of WH	ITE	=			┖╶┼╌┼╼╸	- ++	-7-7	770	
	MYLONITE.										
	TOTAL DEP	TH: 80 FT.								760	
						111					
					┝┥┠╼┼╼┽			┝╌┨┠╌┼		750	
										740	
				┝╌┟╴╀╴	┝╌┫┠╌┼╼┼			┼╼┨┠╼┼		730	
										720	
							11				
				┝╼┼═┼╾	┝┥┝╶┾╌┼			┼┦┠╌┼		710	
										700	

CORE BORING B-81 WEST AREA CSO STORAGE TUNNEL FACILITIES PROJECT RECOVERY AND RQD MEASUREMENTS


	Depth	(feet)	Feet Red	covered	Cal	culated Result	5
Run Number	Top of Run	Bottom of Run	Total	Sum of Pieces >4"	Run Length	Recovery	RQD
1	28.9	37.0	8.1	2.7	8.1	100%	33%
2	37.0	47.0	7.6	5.7	10.0	76%	57%
3	47.0	57.0	10.0	7.2	10.0	100%	72%
4	57.0	67.0	9.9	9.4	10.0	99%	94%
5	67.0	77.0	8.7	8.3	10.0	87%	83%

	JDH	(in feet) Ground Level:			ev. 6.3 Stat	tion & O	ffset	NA 14	+24	24	4R	_	_
		Bottom of Casing:	28	.9 81	7.4 Dat	es Drille	d:	2-Sep	-03 <u>to</u>	2-Se	ep-03	B	
Jorda	n Jones & Goulding	Invert Level:	201			le&Bea		verti	cal	N	/A		U
	ch Mott MacDonald	Bottom of Hole:	7	.0 76	9.3 Met	hod: N	Coring)				na	ige
	Hampton Associates	Water Level:	N/A	N/A	Ver	sion:		27-00	t-03	8	-81	μc	ige
											Perm	eability	Êle
	(all depths, heights, a	nd elevations in fe	et)	Weatt	lering lex		int Count per 3 ft)	t	Reco	VPľV	•	vsec)	atio
op t)	General Rock	Description	C				8 12	16 1		·	6 10 ⁻⁶ 10 ⁻⁵	10 ⁻⁴ 10 ⁻³ 10) ⁻²
	SOIL.			_				Dept	E CIV CI	Ń		\overline{NN}	
								(ft)	$\overline{\mathcal{M}}$	$\mathcal{M}\mathcal{N}$			
									∞	\mathcal{M}	NN	$\mathcal{N}\mathcal{N}$	836
									$\mathbb{N}\mathbb{N}$	$\mathcal{N}\mathcal{N}$		XX	
									$\mathbb{N}\mathbb{N}$	\mathcal{M}		\mathcal{M}	
								2 0	∞	\mathcal{M}		XW	82
									Not		NN		1
	(auger refus	al @ 29 ft)							N	Here		<i>VN</i>	
29. -	BLACK MYLONITE, me		k;						Ê			XX	81
	phanitic to very fine g					10					$ N\rangle$	\mathcal{M}	i
	nternal shearing fabric,											XV	
	along low to mid angle s					┤╞╡		40			N	NN:	80
	@29-62 ft: Transition Zo		,									\mathcal{W}	
	parts along closely space					1 📑						XX)	1
· · ·	abric.			i ::: See I IIII	Note 1		e Note	1				NN	79
	@32-33 ft: high-angle a	nd near vertical		\Rightarrow			7					XX	1
	oints, Fe stained.					K						N/K	78
	@33 ft: 3-inch zone with	weathering index	of			18		- 60	1			\mathcal{W}	\
	4-5, locally weathered to					K			L		$ N\rangle$	XX	1
	@39-40 ft: near vertica	l joint, Fe-Mn stair	ned.								Not	Tested	π
	@43-45 ft: closely spac										NN	NN'	1
	partings with high-angle								P			$\overline{A}\overline{A}$	1
	@43-46 ft: highly fractu		5			┥┝┷		80	┝┼─┼─		╽┝╾┼╍	+ +	76
	along near vertical joint:	s and low-angle											
	nternal shear fabric.								1				
	@46-47 ft: pitted with n	umerous healed, I	nigh-										75
	angle joints.							s -					
(@48-51 ft: highly fract	ured zone with											
- II	partings along mid to hi	gh angle joints and	đ			┫┝─┤			ᡟ᠆┼─		┤┟╼┼━		74
	low to mid angle interna												
1	@62 ft: high-angle joint												
	@72 ft: high-angle joint	•	1						1				7
1	TOTAL DEP	TH: 77 FT.											1 7
						1		120	1		1		1 "
	Notes:												7
								<i>,</i>					
	(1) Core loss at 44.5-46	5.5 ft.					ļ						
						┛┝─┤		14			┥┠╼┾╸		7
									1				
													6

2525-RMC.GPJ 11/3/03

	Depth (feet)		Feet Re	covered	Calculated Results			
Run Number	Top of Run	Bottom of Run	Total	Sum of Pieces > 4"	Run Length (feet)	Recovery (%)	RQD (%)	
1	99.0	103.0	4.0	0.9	4.0	100	23	
2	103.0	112.3	9.3	6.8	9.3	100	73	
3	112.3	120.8	8.5	4.7	8.5	100	55	
4	120.8	130.8	10.0	7.4	10.0	100	74	
5	130.8	140.8	10.0	8.3	10.0	100	83	
6	140.8	151.0	10.2	9.2	10.2	100	90	
7	151.0	161.3	10.3	10.3	10.3	100	100	
8	161.3	163.3	2.0	1.4	2.0	100	70	
9	163.3	173.3	10.0	6.1	10.0	100	61	
10	173.3	183.3	10.0	10.0	10.0	100	100	
11	183.3	193.3	10.0	9.0	10.0	100	90	
12	193.3	203.3	10.0	9.4	10.0	100	94	
13	203.3	213.4	10.1	10.1	10.1	100	100	
14	213.4	223.4	10.0	10.0	10.0	100	100	
15	223.4	233.2	9.8	9.8	9.8	100	100	
16	233.2	243.2	10.0	10.0	10.0	100	100	
17	243.2	253.4	10.2	10.2	10.2	100	100	
18	253.4	263.3	9.9	9.9	9.9	100	100	
19	263.3	273.6	10.2	9.6	10.3	99	93	
20	273.6	283.6	10.0	10.0	10.0	100	100	
21	283.6	293.4	9.9	9.8	9.8	100	100	
22	293.4	303.4	10.0	9.8	10.0	100	98	

SUMMARY OF RECOVERY AND RQD MEASUREMENTS CORE BORING RWB-3

	CITY	OF ATLAN	TA V Depth	VATEF	R SUPPLY	PROG	RAN	Л		
1		Ground Level:	0.0	812.0	Station & Offset	·· 235+23		442 L		
Stantec		Bottom of Casing:		713.0	Dates Drilled:	8/14/14	to	9/10/14		
Y		Invert Level:	215.0	597.0	Angle & Bearing	a: Vertical		N/A	RWE	
Sta	ntec Consulting	Bottom of Hole:	303.4	508.6	Method:	HQ coring	ı (triple		Pag	je '
	Services Inc.	Water Level:	39.0	773.0	Version:	6/10/16	(RWB-3		
Тор	(all depths, heights, and elevatio	,	Weather Index	5	Joint Count (per 3 ft) Depth	RQD Recovery	_	Permeability (cm/sec)	Elev- ation	
(ft)	General Rock Des	cription	0 1 2	3 4 0		<u> </u>	0% ¹⁰	⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³		
0.0	SOIL								812 792	2 ²
									772_	_ 1 [*]
									732_	_ _ 1: _
99.0'	(Auger Refual @ BLACK MYLONITE - Very very well foliated, and me gray. Very well developed Qtz>fspar>bio>musc. Tra	y fine grained, dium to dark d shear texture.				Not Cored, Above Here		Not Tested Above Here	712_	- 1'
	present. Quartz occurs as Porphryoclasts often disp @120': Numerous high an angle fractures with typica smooth-planar surfaces. @123': High angle joint w	s ribbons. lay tails. nd medium ally							692_	8
	smooth-planar surface. @134': High angle fractur rough-stepped joint surfac numerous pieces. @140': High angle fractur rough-stepped joint surfac	re with ce. Core in re with							672_	- 7
	numerous pieces. Between 149' and 151': M joints with smooth-planar	ledium angle surface. Js=1".			160				652	6/

CITY OF ATLANTA WATER SUPPLY PROGRAM										
	-	(in feet)	Depth	Elev.	r			1		
$\left \right $	Stantas	Ground Level:	0.0	812.0 713.0	Station & Of	ffset: 235+23	442 L			
	Stantec	Bottom of Casing:	99.0		Dates Drilleo	d: 8/14/14	to 8/19/14	RWE	3-3	
		Invert Level:	215.0	597.0	Angle & Bea	aring: Vertical	N/A		Page 2	
	ntec Consulting	Bottom of Hole:	303.4	508.6	Method:	HQ coring	(triple tube)			
Services Inc.		Water Level:	39.0	773.0	Version:	6/10/16	RWB-3			
Тор	(all depths, heights, and elevatio		Weatheri Index	ng J	oint Count (per 3 ft) De	RQD Recovery		ation	Hgt above Invert	
(ft)	General Rock Des	-	0 1 2	3 4 0	4 8 12 16		10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10	⁻³ 10 ⁻²		
_	Between 163' and 165': F set. Surfaces range from							-		
	to smooth-irregular.	omootin planai						_		
					>			_		
					1	80		632	35	
L				$ \downarrow \downarrow \downarrow$						
	@188': High angle joint w	rith		h						
	smooth-undulating fractu	e surface.								
					2			612	15	
									<u> </u>	
-								:::::Tu	nnel	
-										
-					2	220		592	-5	
-								002_	1	
-								-	1 -	
-						-		-	- 1	
-						240		572	-25	
-						.40		572_	-23_	
-								-	- 1	
-								=	- 1	
-								-		
6/10/16				IK	2	260		552_	-45_	
ATE.GD1	Between 267' and 269': F	oliation joint			2			-	- 1	
A_TEMPL	set. Js=2".	onation joint						-	- 1	
TA_DAT/				ΙK				-	-	
					2	280		532_	-65	
EV01.GP						-		-	-	
I-EXT-R						-		-	-	
PHASE-						-		-	-	
						800		512_	-85_	
303.4'	Bottom of Hole					303				
ILANTA A'	* No packer test performe	nd hetween 207'	and ROH	1						
7_0F_A1	* Groundwater level mea									
E0			2014.							

Stantec Consulting Services Inc.

Vol 4 Additional Information River Intake Pump Station

Part 4 – CSX Agreement

FACILITY ENCROACHMENT AGREEMENT

THIS AGREEMENT, made and effective as of June 20, 2018, by and between CSX TRANSPORTATION, INC., a Virginia corporation, whose mailing address is 500 Water Street, Jacksonville, Florida 32202, hereinafter called "Licensor," and CITY OF ATLANTA DEPARTMENT OF WATERSHED MANAGEMENT, a municipal corporation, political subdivision or state agency, under the laws of the State of Georgia, whose mailing address is 72 Marietta Street NW, Atlanta, Georgia 30303, hereinafter called "Licensee," WITNESSETH:

WHEREAS, Licensee desires to construct (unless previously constructed and designated as existing herein), use and maintain the below described facility(ies), hereinafter called "Facilities," over, under or across property owned or controlled by Licensor, at the below described location(s):

1. One (1) sixty inch (60") diameter pipeline crossing, solely for the conveyance of potable water, located at or near Atlanta, Fulton County, Georgia, Atlanta Division, Atlanta Terminal Subdivision, Milepost SG-577.9;

hereinafter, called the "Encroachment," as shown on print(s) labeled Exhibit "A," attached hereto and made a part hereof;

NOW, THEREFORE, in consideration of the mutual covenants, conditions, terms and agreements herein contained, the parties hereto agree and covenant as follows:

1. LICENSE:

1.1 Subject to Article 17, Licensor, insofar as it has the legal right, power and authority to do so, and its present title permits, and subject to:

(A) Licensor's present and future right to occupy, possess and use its property within the area of the Encroachment for any and all purposes;

(B) All encumbrances, conditions, covenants, easements, and limitations applicable to Licensor's title to or rights in the subject property; and

(C) Compliance by Licensee with the terms and conditions herein contained;

does hereby license and permit Licensee to construct, maintain, repair, renew, operate, use, alter or change the Facilities at the Encroachment above for the term herein stated, and to remove same upon termination.

1.2 The term <u>Facilities</u>, as used herein, shall include only those structures and ancillary facilities devoted exclusively to the transmission usage above within the Encroachment, and as shown on attached Exhibit A.

1.3 No additional structures or other facilities shall be placed, allowed, or maintained by Licensee in, upon or on the Encroachment except upon prior separate written consent of Licensor.

2. ENCROACHMENT FEE; TERM:

2.1 Licensee shall pay Licensor a one-time nonrefundable Encroachment Fee of TWENTY-FOUR THOUSAND FOUR HUNDRED EIGHTY AND 00/100 U.S. DOLLARS (\$24,480.00) upon execution of this Agreement. Licensee agrees that the Encroachment Fee applies only to the original Licensee under this Agreement. In the event of a successor (by merger, consolidation, reorganization and/or assignment) or if the original Licensee changes its name, then Licensee shall be subject to payment of Licensor's current administrative and document preparation fees for the cost incurred by Licensor in preparing and maintaining this Agreement on a current basis.

2.2 However, Licensee assumes sole responsibility for, and shall pay directly (or reimburse Licensor), any additional annual taxes and/or periodic assessments levied against Licensor or Licensor's property solely on account of said Facilities or Encroachment.

2.3 This Agreement shall terminate as herein provided, but shall also terminate upon: (a) Licensee's cessation of use of the Facilities or Encroachment for the purpose(s) above; (b) removal of the Facilities; (c) subsequent mutual consent; and/or (d) failure of Licensee to complete installation within five (5) years from the effective date of this Agreement.

2.4 In further consideration for the license or right hereby granted, Licensee hereby agrees that Licensor shall not be charged or assessed, directly or indirectly, with any part of the cost of the installation of said Facilities and appurtenances, and/or maintenance thereof, or for any public works project of which said Facilities is a part.

3. CONSTRUCTION, MAINTENANCE AND REPAIRS:

3.1 Licensee shall construct, maintain, relocate, repair, renew, alter, and/or remove the Facilities, in a prudent, workmanlike manner, using quality materials and complying with any applicable standard(s) or regulation(s) of Licensor (CSXT Specifications), or Licensee's particular industry, National Electrical Safety Code, or any governmental or regulatory body having jurisdiction over the Encroachment.

3.2 Location and construction of Facilities shall be made strictly in accordance with design(s) and specifications furnished to and approved by Licensor and of material(s) and size(s) appropriate for the purpose(s) above recited.

3.3 All of Licensee's work, and exercise of rights hereunder, shall be undertaken at time(s) satisfactory to Licensor, and so as to eliminate or minimize any impact on or interference with the safe use and operation of Licensor's property and appurtenances thereto.

3.4 In the installation, maintenance, repair and/or removal of said Facilities, Licensee shall not use explosives of any type or perform or cause any blasting without the separate express written consent of Licensor. As a condition to such consent, a representative will be assigned by Licensor to monitor blasting, and Licensee shall reimburse Licensor for the entire cost and/or expense of furnishing said monitor.

3.5 Any repairs or maintenance to the Facilities, whether resulting from acts of Licensee, or natural or weather events, which are necessary to protect or facilitate Licensor's use of its property, shall be made by Licensee promptly, but in no event later than thirty (30) days after Licensee has notice as to the need for such repairs or maintenance.

3.6 Licensor, in order to protect or safeguard its property, rail operations, equipment and/or employees from damage or injury, may request immediate repair or renewal of the Facilities, and if the same is not performed, may make or contract to make such repairs or renewals, at the sole risk, cost and expense of Licensee.

3.7 Neither the failure of Licensor to object to any work done, material used, or method of construction or maintenance of said Encroachment, nor any approval given or supervision exercised by Licensor, shall be construed as an admission of liability or responsibility by Licensor, or as a waiver by Licensor of any of the obligations, liability and/or responsibility of Licensee under this Agreement.

3.8 All work on the Encroachment shall be conducted in accordance with Licensor's safety rules and regulations.

3.9 Licensee hereby agrees to reimburse Licensor any loss, cost or expense (including losses resulting from train delays and/or inability to meet train schedules) arising from any failure of Licensee to make repairs or conduct maintenance as required by Section 3.5 above or from improper or incomplete repairs or maintenance to the Facilities or Encroachment.

3.10 In the event it becomes necessary for the Licensee to deviate from the approved Exhibit, Licensee shall seek prior approval from CSXT, or when applicable, an official field representative of CSXT permitted to approve changes, authorizing the necessary field changes and Licensee shall provide CSXT with complete As-Built Drawings of the completed work. As-Built Drawings shall be submitted to Licensor in either electronic or hard copy form upon the substantial completion of the project and upon Licensor's request.

3.11 In the event of large scale maintenance/construction work to railroad bridges Licensee is required to protect power lines with insulated covers or comparable safety devices at their costs during construction/maintenance for safety of railroad employees.

4. **PERMITS, LICENSES:**

4.1 Before any work hereunder is performed, or before use of the Encroachment for the contracted purpose, Licensee, at its sole cost and expense, shall obtain all necessary permit(s) (including but not limited to zoning, building, construction, health, safety or environmental matters), letter(s) or certificate(s) of approval. Licensee expressly agrees and warrants that it shall conform and limit its activities to the terms of such permit(s), approval(s) and authorization(s), and shall comply with all applicable ordinances, rules, regulations, requirements and laws of any governmental authority (State, Federal or Local) having jurisdiction over Licensee's activities, including the location, contact, excavation and protection regulations of the Occupational Safety and Health Act (OSHA) (29 CFR 1926.651(b)), et al., and State "One Call" - "Call Before You Dig" requirements.

4.2 Licensee assumes sole responsibility for failure to obtain such permit(s) or approval(s), for any violations thereof, or for costs or expenses of compliance or remedy.

5. MARKING AND SUPPORT:

5.1 With respect to any <u>subsurface</u> installation or maintenance upon Licensor's property, Licensee, at its sole cost and expense, shall:

(A) support track(s) and roadbed in a manner satisfactory to Licensor;

(B) backfill with satisfactory material and thoroughly tamp all trenches to prevent settling of surface of land and roadbed of Licensor; and

(C) either remove any surplus earth or material from Licensor's property or cause said surplus earth or material to be placed and distributed at location(s) and in such manner Licensor may approve.

5.2 After construction or maintenance of the Facilities, Licensee shall:

(A) Restore any track(s), roadbed and other disturbed property; and

(B) Erect, maintain and periodically verify the accuracy of aboveground markers, in a form approved by Licensor, indicating the location, depth and ownership of any underground Facilities or related facilities.

5.3 Licensee shall be solely responsible for any subsidence or failure of lateral or subjacent support in the Encroachment area for a period of three (3) years after completion of installation.

6. TRACK CHANGES:

6.1 In the event that rail operations and/or track maintenance result in changes in grade or alignment of, additions to, or relocation of track(s) or other facilities, or in the event future use of Licensor's rail corridor or property necessitate any change of location, height or depth in the Facilities or Encroachment, Licensee, at its sole cost and expense and within thirty (30) days after notice in writing from Licensor, shall make changes in the Facilities or Encroachment to accommodate such track(s) or operations.

6.2 If Licensee fails to do so, Licensor may make or contract to make such changes at Licensee's cost.

7. FACILITY CHANGES:

7.1 Licensee shall periodically monitor and verify the depth or height of the Facilities or Encroachment in relation to the existing tracks and facilities, and shall relocate the Facilities or change the Encroachment, at Licensee's expense, should such relocation or change be necessary to comply with the minimum clearance requirements of Licensor.

7.2 If Licensee undertakes to revise, renew, relocate or change in any manner whatsoever all or any part of the Facilities (including any change in voltage or gauge of wire or any change in circumference, diameter or radius of pipe or change in materials transmitted in and through said pipe), or is required by any public agency or court order to do so, plans therefor shall be submitted to Licensor for approval before such change. After approval, the terms and conditions of this Agreement shall apply thereto.

8. INTERFERENCE WITH RAIL FACILITIES:

8.1 Although the Facilities/Encroachment herein permitted may not presently interfere with Licensor's railroad or facilities, in the event that the operation, existence or maintenance of said Facilities, in the sole judgment of Licensor, causes: (a) interference (including, but not limited to, physical or interference from an electromagnetic induction, or interference from stray or other currents) with Licensor's power lines, communication, signal or other wires, train control system, or electrical or electronic apparatus; or (b) interference in any manner, with the operation, maintenance or use of the rail corridor, track(s), structures, pole line(s), devices, other property, or any appurtenances thereto; then and in either event, Licensee, upon receipt of written notice from Licensor of any such interference, and at Licensee's sole risk, cost and expense, shall promptly make such changes in its Facilities or installation, as may be required in the reasonable judgment of the Licensor to eliminate all such interference. Upon Licensee's failure to remedy or change, Licensor may do so or contract to do so at Licensee's sole cost.

8.2 Without assuming any duty hereunder to inspect the Facilities, Licensor hereby reserves the right to inspect same and to require Licensee to undertake repairs, maintenance or adjustments to the Facilities, which Licensee hereby agrees to make promptly, at Licensee's sole cost and expense.

9. RISK, LIABILITY, INDEMNITY:

With respect to the relative risk and liabilities of the parties, it is hereby agreed that:

9.1 To the fullest extent permitted by State law (constitutional or statutory, as amended), Licensee hereby agrees to, defend, indemnify, and hold Licensor harmless from and against any and all liability, loss, claim, suit, damage, charge or expense which Licensor may suffer, sustain, incur or in any way be subjected to, on account of death of or injury to any person

whomsoever (including officers, agents, employees or invitees of Licensor), and for damage to or loss of or destruction of any property whatsoever, arising out of, resulting from, or in any way connected with the construction, repair, maintenance, replacement, presence, existence, operations, use or removal of the Facilities or any structure in connection therewith, or restoration of premises of Licensor to good order or condition after removal, EXCEPT when proven to have been caused solely by the willful misconduct or gross negligence of Licensor. HOWEVER, to the fullest extent permitted by State law, during any period of actual construction, repair, maintenance, replacement or removal of the Facilities, wherein agents, equipment or personnel of Licensee are on the railroad rail corridor, Licensee's liability hereunder shall be absolute, irrespective of any joint, sole or contributory fault or negligence of Licensor.

9.2 Use of Licensor's rail corridor involves certain risks of loss or damage as a result of the rail operations. Notwithstanding Section 9.1, Licensee expressly assumes all risk of loss and damage to Licensee's Property or the Facilities in, on, over or under the Encroachment, including loss of or any interference with use or service thereof, regardless of cause, including electrical field creation, fire or derailment resulting from rail operations. For this Section, the term "Licensee's Property" shall include property of third parties situated or placed upon Licensor's rail corridor by Licensee or by such third parties at request of or for benefit of Licensee.

9.3 To the fullest extent permitted by State law, as above, Licensee assumes all responsibility for, and agrees to defend, indemnify and hold Licensor harmless from: (a) all claims, costs and expenses, including reasonable attorneys' fees, as a consequence of any sudden or nonsudden pollution of air, water, land and/or ground water on or off the Encroachment area, arising from or in connection with the use of this Encroachment or resulting from leaking, bursting, spilling, or any escape of the material transmitted in or through the Facilities; (b) any claim or liability arising under federal or state law dealing with either such sudden or nonsudden pollution of air, water, land and/or ground water arising therefrom or the remedy thereof; and (c) any subsidence or failure of lateral or subjacent support of the tracks arising from such Facilities leakage.

9.4 Notwithstanding Section 9.1, Licensee also expressly assumes all risk of loss which in any way may result from Licensee's failure to maintain either required clearances for any overhead Facilities or the required depth and encasement for any underground Facilities, whether or not such loss(es) result(s) in whole or part from Licensor's contributory negligence or joint fault.

9.5 Obligations of Licensee hereunder to release, indemnify and hold Licensor harmless shall also extend to companies and other legal entities that control, are controlled by, subsidiaries of, or are affiliated with Licensor, as well as any railroad that operates over the rail corridor on which the Encroachment is located, and the officers, employees and agents of each.

9.6 If a claim is made or action is brought against Licensor, and/or its operating lessee, for which Licensee may be responsible hereunder, in whole or in part, Licensee shall be

notified to assume the handling or defense of such claim or action; but Licensor may participate in such handling or defense.

9.7 Notwithstanding anything contained in this Agreement, the limitation of liability contained in the state statutes, as amended from time to time, shall not limit Licensor's ability to collect under the insurance policies required to be maintained under this Agreement.

10. INSURANCE:

10.1 Prior to commencement of surveys, installation or occupation of premises pursuant to this Agreement, Licensee shall procure and shall maintain during the continuance of this Agreement, at its sole cost and expense, a policy of

(i) Statutory Worker's Compensation and Employers Liability Insurance with available limits of not less than ONE MILLION AND 00/100 U.S. DOLLARS (\$1,000,000.00), which must contain a waiver of subrogation against CSXT and its Affiliates;

(ii) Commercial General Liability coverage (inclusive of contractual liability) with available limits of not less than FIVE MILLION AND 00/100 U.S. DOLLARS (\$5,000,000.00), naming Licensor, and/or its designee, as additional insured and in combined single limits for bodily injury and property damage and covering the contractual liabilities assumed under this Agreement. The evidence of insurance coverage shall be endorsed to provide for thirty (30) days' notice to Licensor, or its designee, prior to cancellation or modification of any policy. Mail CGL certificate, along with agreement, to CSX Transportation, Inc., Speed Code J180, 500 Water Street, Jacksonville, FL 32202. On each successive year, send certificate to RenewalCOI@csx.com.

(iii) Business automobile liability insurance with available limits of not less than ONE MILLION AND 00/100 U.S. DOLLARS (\$1,000,000.00) combined single limit for bodily injury and/or property damage per occurrence;

(iv) Such other insurance as Licensor may reasonably require.

10.2 If Licensee's existing CGL policy(ies) do(es) not automatically cover Licensee's contractual liability during periods of survey, installation, maintenance and continued occupation, a specific endorsement adding such coverage shall be purchased by Licensee. If said CGL policy is written on a "claims made" basis instead of a "per occurrence" basis, Licensee shall arrange for adequate time for reporting losses. Failure to do so shall be at Licensee's sole risk.

10.3 Licensor, or its designee, may at any time request evidence of insurance purchased by Licensee to comply with this Agreement. Failure of Licensee to comply with Licensor's request shall be considered a default by Licensee.

10.4 Securing such insurance shall not limit Licensee's liability under this Agreement, but shall be security therefor.

10.5 (A) In the event Licensee finds it necessary to perform construction or demolition operations within fifty feet (50') of any operated railroad track(s) or affecting any railroad bridge, trestle, tunnel, track(s), roadbed, overpass or underpass, Licensee shall: (a) notify Licensor; and (b) require its contractor(s) performing such operations to procure and maintain during the period of construction or demolition operations, at no cost to Licensor, <u>Railroad</u> <u>Protective Liability (RPL) Insurance</u>, naming Licensor, and/or its designee, as Named Insured, written on the current ISO/RIMA Form (ISO Form No. CG 00 35 01 96) with limits of FIVE MILLION AND 00/100 U.S. DOLLARS (\$5,000,000.00) per occurrence for bodily injury and property damage, with at least TEN MILLION AND 00/100 U.S. DOLLARS (\$10,000,000.00) aggregate limit per annual policy period, with Pollution Exclusion Amendment (ISO CG 28 31 11 85) if an older ISO Form CG 00 35 is used. The original of such <u>RPL</u> policy shall be sent to and approved by Licensor prior to commencement of such construction or demolition. Licensor reserves the right to demand higher limits.

(B) At Licensor's option, in lieu of purchasing RPL insurance from an insurance company (but not CGL insurance), Licensee may pay Licensor, at Licensor's current rate at time of request, the cost of adding this Encroachment, or additional construction and/or demolition activities, to Licensor's <u>Railroad Protective Liability (RPL) Policy</u> for the period of actual construction. This coverage is offered at Licensor's discretion and may not be available under all circumstances.

10.6 Notwithstanding the provisions of Sections 10.1 and 10.2, Licensee, pursuant to State Statute(s), may self-insure or self-assume, in any amount(s), any contracted liability arising under this Agreement, under a funded program of self-insurance, which fund will respond to liability of Licensee imposed by and in accordance with the procedures established by law.

11. GRADE CROSSINGS; FLAGGING:

11.1 Nothing herein contained shall be construed to permit Licensee or Licensee's contractor to move any vehicles or equipment over the track(s), except at public road crossing(s), without separate prior written approval of Licensor.

11.2 If Licensor deems it advisable, during any construction, maintenance, repair, renewal, alteration, change or removal of said Facilities, to place watchmen, flagmen, inspectors or supervisors for protection of operations of Licensor or others on Licensor's rail corridor at the Encroachment, and to keep persons, equipment or materials away from the track(s), Licensor shall have the right to do so at the expense of Licensee, but Licensor shall not be liable for failure to do so.

12. LICENSOR'S COSTS:

12.1 Any additional or alternative costs or expenses incurred by Licensor to accommodate Licensee's continued use of Licensor's property as a result of track changes or wire changes shall also be paid by Licensee.

12.2 Licensor's expense for wages ("force account" charges) and materials for any work performed at the expense of Licensee pursuant hereto shall be paid by Licensee within thirty (30) days after receipt of Licensor's bill therefor. Licensor may, at its discretion, request an advance deposit for estimated Licensor costs and expenses.

12.3 Such expense shall include, but not be limited to, cost of railroad labor and supervision under "force account" rules, plus current applicable overhead percentages, the actual cost of materials, and insurance, freight and handling charges on all material used. Equipment rentals shall be in accordance with Licensor's applicable fixed rate. Licensor may, at its discretion, require advance deposits for estimated costs of such expenses and costs.

13. DEFAULT, BREACH, WAIVER:

13.1 The proper and complete performance of each covenant of this Agreement shall be deemed of the essence thereof, and in the event Licensee fails or refuses to fully and completely perform any of said covenants or remedy any breach within thirty (30) days after receiving written notice from Licensor to do so (or within forty-eight (48) hours in the event of notice of a railroad emergency), Licensor shall have the option of immediately revoking this Agreement and the privileges and powers hereby conferred, regardless of encroachment fee(s) having been paid in advance for any annual or other period. Upon such revocation, Licensee shall make removal in accordance with Article 14.

13.2 No waiver by Licensor of its rights as to any breach of covenant or condition herein contained shall be construed as a permanent waiver of such covenant or condition, or any subsequent breach thereof, unless such covenant or condition is permanently waived in writing by Licensor.

13.3 Neither the failure of Licensor to object to any work done, material used, or method of construction or maintenance of said Encroachment, nor any approval given or supervision exercised by Licensor, shall be construed as an admission of liability or responsibility by Licensor, or as a waiver by Licensor of any of the obligations, liability and/or responsibility of Licensee under this Agreement.

14. TERMINATION, REMOVAL:

14.1 All rights which Licensee may have hereunder shall cease upon the date of (a) termination, (b) revocation, or (c) subsequent agreement, or (d) Licensee's removal of the Facility from the Encroachment. However, neither termination nor revocation of this Agreement shall affect any claims and liabilities which have arisen or accrued hereunder, and which at the time of termination or revocation have not been satisfied; neither party, however, waiving any third party defenses or actions.

14.2 Within thirty (30) days after revocation or termination, Licensee, at its sole risk and expense, shall (a) remove the Facilities from the rail corridor of Licensor, unless the parties hereto agree otherwise, (b) restore the rail corridor of Licensor in a manner satisfactory to

Licensor, and (c) reimburse Licensor any loss, cost or expense of Licensor resulting from such removal.

15. NOTICE:

15.1 Licensee shall give Licensor at least thirty (30) days written notice before doing any work on Licensor's rail corridor, except that in cases of emergency shorter notice may be given. Licensee shall provide proper notification as follows:

a. For non-emergencies, Licensee shall submit online via the CSX Property Portal from Licensor's web site, via web link: https://propertyportal.csx.com/pub_ps_res/ps_res/jsf/public/index.faces

b. For emergencies, Licensee shall complete all of the steps outlined in Section 15.1 a. above, and shall also include detailed information of the emergency. Licensee shall also call and report details of the emergency to Licensor's Rail Operations Emergency Telephone Number: 1-800-232-0144. In the event Licensor needs to contact Licensee concerning an emergency involving Licensee's Facility(ies), the emergency phone number for Licensee is: 678-560-2557.

15.2 All other notices and communications concerning this Agreement shall be addressed to <u>Licensee</u> at the address above, and to <u>Licensor</u> at the address shown on Page 1, c/o CSXT Contract Management, J180; <u>or</u> at such other address as either party may designate in writing to the other.

15.3 Unless otherwise expressly stated herein, all such notices shall be in writing and sent via Certified or Registered Mail, Return Receipt Requested, or by courier, and shall be considered delivered upon: (a) actual receipt, or (b) date of refusal of such delivery.

16. ASSIGNMENT:

16.1 The rights herein conferred are the privileges of Licensee only, and Licensee shall obtain Licensor's prior written consent to any assignment of Licensee's interest herein; said consent shall not be unreasonably withheld.

16.2 Subject to Sections 2 and 16.1, this Agreement shall be binding upon and inure to the benefit of the parties hereto and their respective successors or assigns.

16.3 Licensee shall give Licensor written notice of any legal succession (by merger, consolidation, reorganization, etc.) or other change of legal existence or status of Licensee, with a copy of all documents attesting to such change or legal succession, within thirty (30) days thereof.

16.4 Licensor expressly reserves the right to assign this Agreement, in whole or in part, to any grantee, lessee, or vendee of Licensor's underlying property interests in the Encroachment, upon written notice thereof to Licensee.

16.5 In the event of any unauthorized sale, transfer, assignment, sublicense or encumbrance of this Agreement, or any of the rights and privileges hereunder, Licensor, at its option, may revoke this Agreement by giving Licensee or any such assignee written notice of such revocation; and Licensee shall reimburse Licensor for any loss, cost or expense Licensor may incur as a result of Licensee's failure to obtain said consent.

17. TITLE:

17.1 Licensee understands that Licensor occupies, uses and possesses lands, rights-of-way and rail corridors under all forms and qualities of ownership rights or facts, from full fee simple absolute to bare occupation. Accordingly, nothing in this Agreement shall act as or be deemed to act as any warranty, guaranty or representation of the quality of Licensor's title for any particular Encroachment or segment of Rail Corridor occupied, used or enjoyed in any manner by Licensee under any rights created in this Agreement. It is expressly understood that Licensor does not warrant title to any Rail Corridor and Licensee will accept the grants and privileges contained herein, subject to all lawful outstanding existing liens, mortgages and superior rights in and to the Rail Corridor, and all leases, licenses and easements or other interests previously granted to others therein.

The term "license," as used herein, shall mean with regard to any portion of 17.2the Rail Corridor which is owned by Licensor in fee simple absolute, or where the applicable law of the State where the Encroachment is located otherwise permits Licensor to make such grants to Licensee, a "permission to use" the Rail Corridor, with dominion and control over such portion of the Rail Corridor remaining with Licensor, and no interest in or exclusive right to possess being otherwise granted to Licensee. With regard to any other portion of Rail Corridor occupied, used or controlled by Licensor under any other facts or rights, Licensor merely waives its exclusive right to occupy the Rail Corridor and grants no other rights whatsoever under this Agreement, such waiver continuing only so long as Licensor continues its own occupation, use or control. Licensor does not warrant or guarantee that the license granted hereunder provides Licensee with all of the rights necessary to occupy any portion of the Rail Corridor. Licensee further acknowledges that it does not have the right to occupy any portion of the Rail Corridor held by Licensor in less than fee simple absolute without also receiving the consent of the owner(s) of the fee simple absolute estate. Further, Licensee shall not obtain, exercise or claim any interest in the Rail Corridor that would impair Licensor's existing rights therein.

17.3 Licensee agrees it shall not have nor shall it make, and hereby completely and absolutely waives its right to, any claim against Licensor for damages on account of any deficiencies in title to the Rail Corridor in the event of failure or insufficiency of Licensor's title to any portion thereof arising from Licensee's use or occupancy thereof.

17.4 Licensee agrees to fully and completely indemnify and defend all claims or litigation for slander of title, overburden of easement, or similar claims arising out of or based upon the Facilities placement, or the presence of the Facilities in, on or along any Encroachment(s), including claims for punitive or special damages.

17.5 Licensee shall not at any time own or claim any right, title or interest in or to Licensor's property occupied by the Encroachments, nor shall the exercise of this Agreement for any length of time give rise to any right, title or interest in Licensee to said property other than the license herein created.

17.6 Nothing in this Agreement shall be deemed to give, and Licensor hereby expressly waives, any claim of ownership in and to any part of the Facilities.

17.7 Licensee shall not create or permit any mortgage, pledge, security, interest, lien or encumbrances, including without limitation, tax liens and liens or encumbrances with respect to work performed or equipment furnished in connection with the construction, installation, repair, maintenance or operation of the Facilities in or on any portion of the Encroachment (collectively, "Liens or Encumbrances"), to be established or remain against the Encroachment or any portion thereof or any other Licensor property.

17.8 In the event that any property of Licensor becomes subject to such Liens or Encumbrances, Licensee agrees to pay, discharge or remove the same promptly upon Licensee's receipt of notice that such Liens or Encumbrances have been filed or docketed against the Encroachment or any other property of Licensor; however, Licensee reserves the right to challenge, at its sole expense, the validity and/or enforceability of any such Liens or Encumbrances.

18. GENERAL PROVISIONS:

18.1 This Agreement, and the attached specifications, contains the entire understanding between the parties hereto.

18.2 Neither this Agreement, any provision hereof, nor any agreement or provision included herein by reference, shall operate or be construed as being for the benefit of any third person.

18.3 Except as otherwise provided herein, or in any Rider attached hereto, neither the form of this Agreement, nor any language herein, shall be interpreted or construed in favor of or against either party hereto as the sole drafter thereof.

18.4 This Agreement is executed under current interpretation of applicable Federal, State, County, Municipal or other local statute, ordinance or law(s). However, each separate division (paragraph, clause, item, term, condition, covenant or agreement) herein shall have independent and severable status for the determination of legality, so that if any separate division is determined to be void or unenforceable for any reason, such determination shall have no effect upon the validity or enforceability of each other separate division, or any combination thereof.

18.5 This Agreement shall be construed and governed by the laws of the state in which the Facilities and Encroachment are located.

18.6 If any amount due pursuant to the terms of this Agreement is not paid by the due date, it will be subject to Licensor's standard late charge and will also accrue interest at eighteen percent (18%) per annum, unless limited by local law, and then at the highest rate so permitted.

18.7 Licensee agrees to reimburse Licensor for all reasonable costs (including attorney's fees) incurred by Licensor for collecting any amount due under the Agreement.

18.8 The provisions of this License are considered confidential and may not be disclosed to a third party without the consent of the other party(s), except: (a) as required by statute, regulation or court order, (b) to a parent, affiliate or subsidiary company, (c) to an auditing firm or legal counsel that are agreeable to the confidentiality provisions, or (d) to Lessees of Licensor's land and/or track who are affected by the terms and conditions of this Agreement and will maintain the confidentiality of this Agreement.

18.9 Within thirty (30) days of an overpayment in a cumulative total amount of One Hundred Dollars (\$100.00) or more by Licensee to Licensor, Licensee shall notify Licensor in writing with documentation evidencing such overpayment. Licensor shall refund the actual amount of Licensee's overpayment within 120 days of Licensor's verification of such overpayment.

[Signatures on the following page]

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate (each of which shall constitute an original) as of the effective date of this Agreement.

Witness for Licensor:

Witness for Licensee:

CSX TRANSPORTATION, INC. By:

Print/Type Name:____

Ray E. Birkholz Director, Real Estate Services

Print/Type Title:

CITY OF ATLANTA

A S. Mar.

1 Culiera Bv:

Who, by the execution hereof, affirms that he/she has the authority to do so and to bind the Licensee to the terms and conditions of this Agreement.

Print/Type Name: DAVID L. WILSON I

Print/Type Title: CHIEF PROCUREMENT OFFICER

Tax ID No.: 58 6000511

Recommended By: KISHIA L. POWELL COMMISSIONER, DWM

Title

Name

City Attorney St. Act.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate (each of which shall constitute an original) as of the effective date of this Agreement.

Witness for Mcensor:

CSX TRANSPORTATION, INC.

By:

Print/Type Name:

Ray E. Birkholz Director, Real Estate Scill

Print/Type Title:

Witness for Licensee:

Je 3- mar

CITY OF ATLANTA

C. Welas Bv:

Who, by the execution hereof, affirms that he/she has the authority to do so and to bind the Licensee to the terms and conditions of this Agreement.

Print/Type Name: DAVID L. WILSON II

Print/Type Title: CHIEF PROCURMENT OFFICER

Tax ID No.:_ 50 60051 \

Recommended By: **KISHIA L. POWELL** COMMISSIONER, DWM Title

Name

City Attorney, Sr. Acst.

PS - FORM 1001-G REVISED APRIL 29, 2008 AGREEMENT NO. CSX860469

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate (each of which shall constitute an original) as of the effective date of this Agreement.

Witness for Licensor:

Witness for Licensee:

CSX TRANSPORTATION, INC. By:

Print/Type Name:_

Ray E. Birkholz Director, Real Estate Services

Print/Type Title:__

CITY OF ATLANTA

fel 3. Wor

Off Og By:

Who, by the execution hereof, affirms that he/she has the authority to do so and to bind the Licensee to the terms and conditions of this Agreement.

Print/Type Name: DAVID L. WILSON I

Print/Type Title: CHIEF PROCUREMENT OFFICER

Tax ID No.: 586000 511

Recommended By: KISHIA'L POWELL COMMISSIONER, DWM

Title

Name

City Attorney Sr. Assl.

PS - FORM 1001-G **REVISED APRIL 29, 2008** AGREEMENT NO. CSX860469

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate (each of which shall constitute an original) as of the effective date of this Agreement.

Witness for Licensor:

CSX TRANSPORTATION, INC.

By: May

Print/Type Name:

Ray E. Birkholz Director, Real Estate Services

Print/Type Title:

CITY OF ATLANTA

Witness for Licensee:

0 8. 3 fat

2 hela By:

Who, by the execution hereof, affirms that he/she has the authority to do so and to bind the Licensee to the terms and conditions of this Agreement.

Print/Type Name: DAVID L. WILSON I

Print/Type Title: DECHIEF PROCUMENT DEFICER

Tax ID No.: 58 6000 511

Recommended By: KISHIAL POWELL COMMISSIONER, DWM

Title

Name

City Attorney, St. Avest.

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate (each of which shall constitute an original) as of the effective date of this Agreement.

Witness for Licensor:

CSX TRANSPORTATION, INC.

By: Ray E. Birkholz

Print/Type Name:

Director, Real Estate Services

Print/Type Title:

CITY OF ATLANTA

Witness for Licensee:

Jel E. mat

C. When I Bv

Who, by the execution hereof, affirms that he/she has the authority to do so and to bind the Licensee to the terms and conditions of this Agreement.

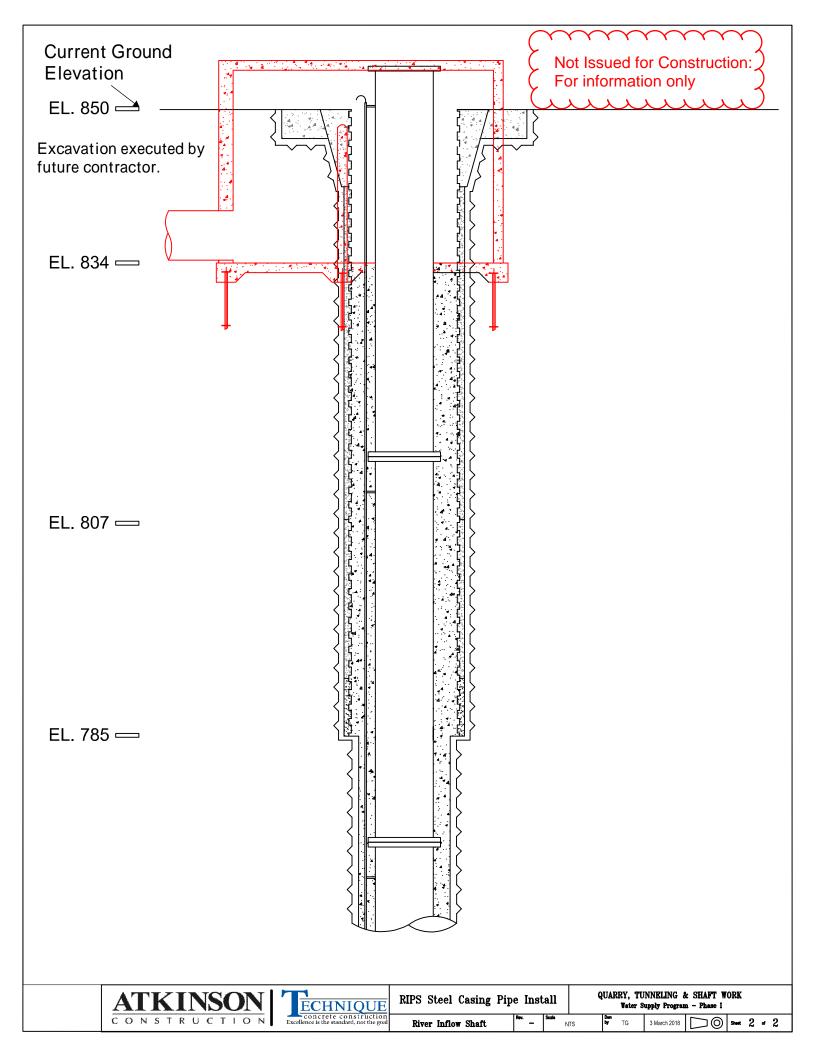
Print/Type Name: DAVID L. WILSON I

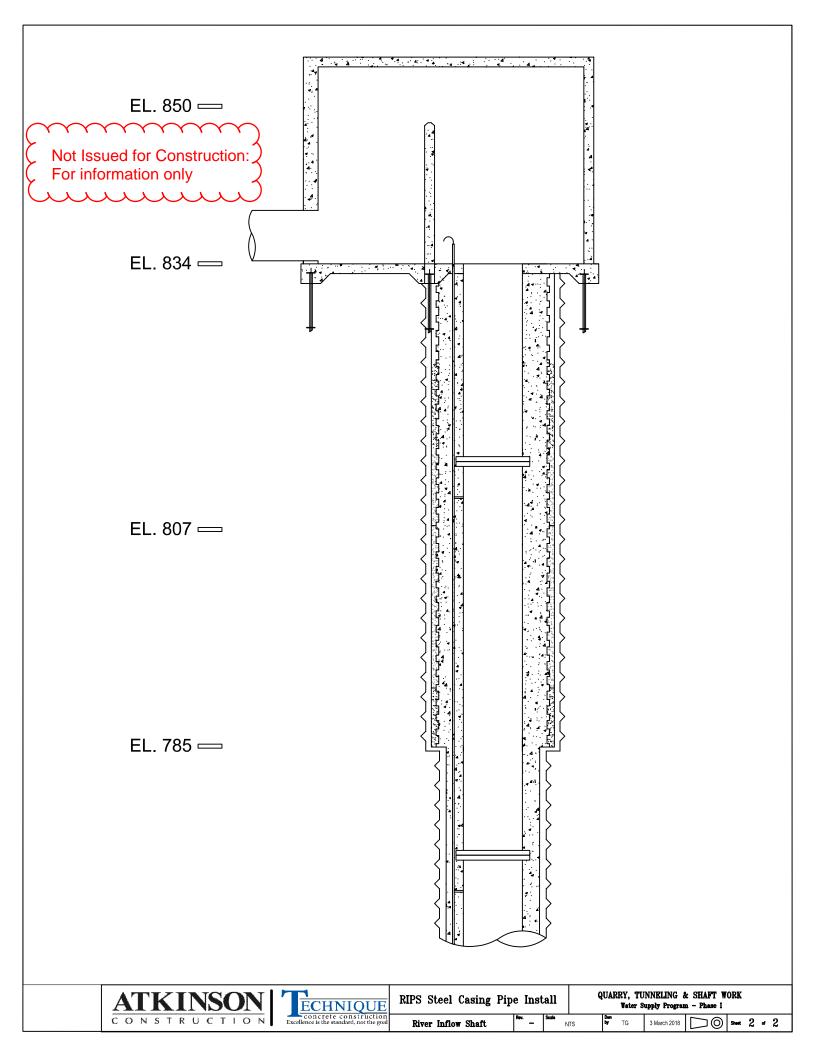
Print/Type Title: CHIEF PROLUMENT OFFICER

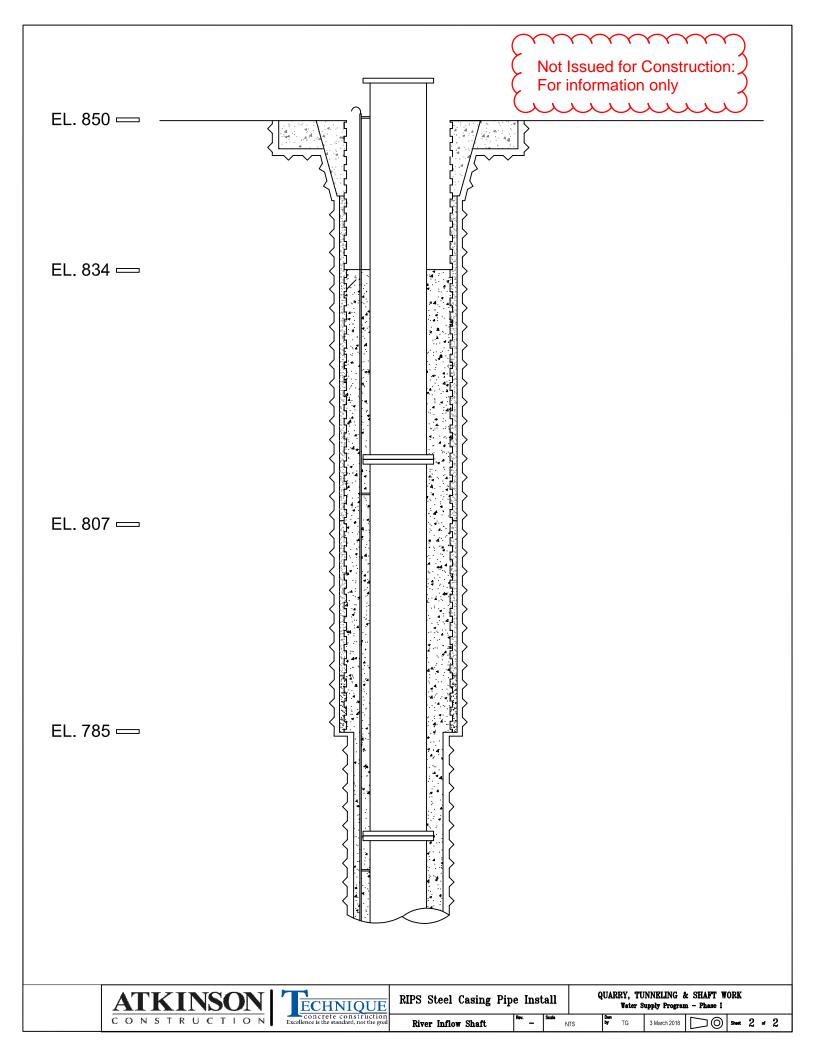
Tax ID No.: 586000511

Recommended By: KISHIAL. POWEL COMMISSIONER, DWM

Name

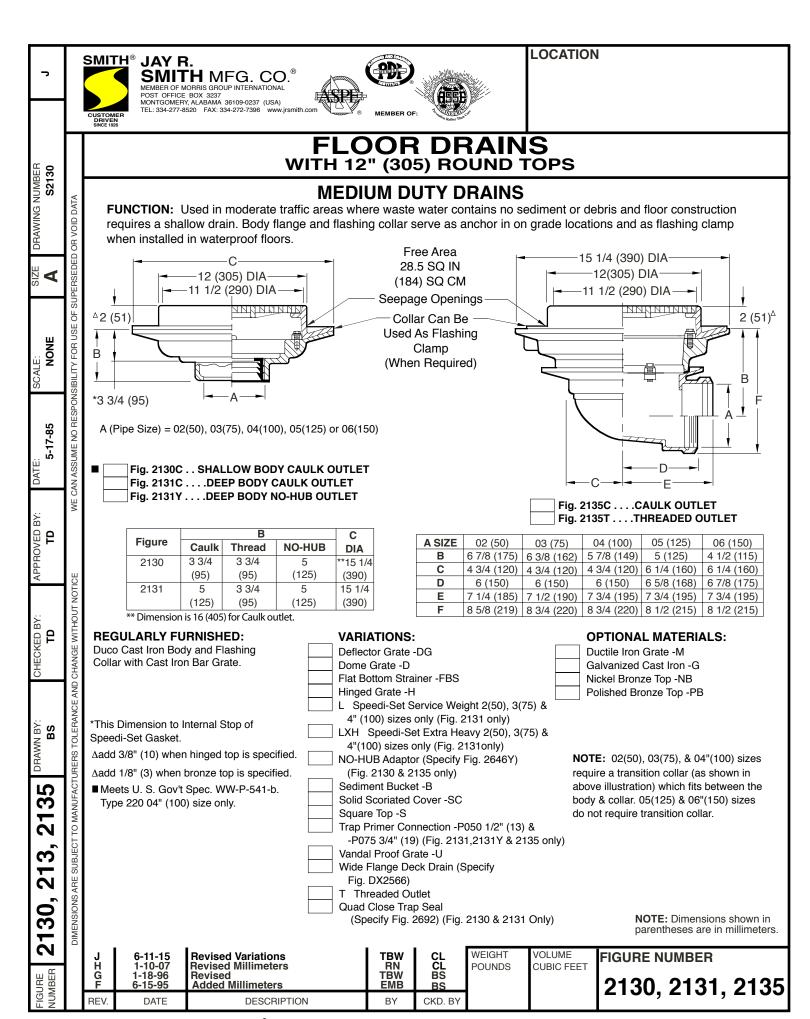

Title


APPROVED AS TO FORM:

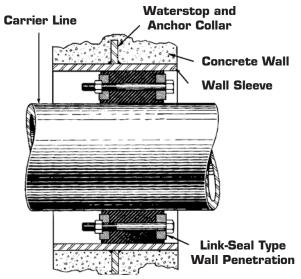

City Attorney sc. Asst.

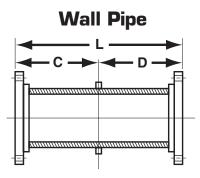
Vol 4 Additional Information River Intake Pump Station

Part 5 – River Intake Shaft Workplan -Not for Construction-



Vol 4 Additional Information River Intake Pump Station


Part 6 – Product Data


Wall Sleeves

Wall Sleeves

Cut-away of completed Link-Seal and sleeve installation.

For concrete wall or floor penetration we offer fabricated steel wall sleeves. Sleeves are specifically fabricated for use with Link-Seal, which provides hydrostatic sealing of annular space between pipes and sleeves. Link-Seal is available in eight (8) different thicknesses to fit various size spaces.

ORDERING NOTES:

- Wall Pipe may have screwed on or cast MJ Bell at discretion of manufacturer. Screw on bells may be tapped for stud bolts for flush mount.
- Fabricated Wall Pipe and Wall Sleeves are made to order, and are NOT RETURNABLE.
- Dimensions "C", "D" and "L" are required to enter order. O.D. of seep ring is O.D. of the pipe plus 3-inches.
- Minimum length is 6-inches face to face.

Link-Seal®

Link-Seals are synthetic rubber interlocking links for sealing pipes through walls, floors and casings.

Design Considerations:

Link-Seal Saves Time And Money

Link-Seal installs in up to 75% less time compared to lead-oakum joints, hand-fitted flashings, mastics, or casing boots. This means important cost savings.

Positive Hydrostatic Sealing

Properly installed, Link-Seal is rated at 20 psig (40 feet of head), which exceeds the performance requirements of most applications.

Long Seal Life

Link-Seal is designed for use as a permanent seal. Many installations have been in service for 25 years. Seal elements are specially compounded to resist aging, ozone, sunlight, water and a wide range of chemicals.

Seals and Pipe

If it's round, Link-Seal can seal it! Applications include concrete, cast iron, steel, copper, plastic, electrical and telecommunications cable.

Corrosion Protection

Where insulation against galvanic corrosion (or electrolysis) is required, Link-Seal provides complete separation of pipe and casing. Metal-to-metal contact is eliminated.

Compensates for Misalignment

Link-Seal allows for some angular and off-center pipe conditions and still seals effectively.

Absorbs Shocks, Sound and Vibration

This inherent benefit of Link-Seal helps reduce pipe failures due to fatigue at welds, flanges and threaded connections.

	SIZE	PRODUCT NUMBER
	LS-200-C	28275
	LS-275-C	28276
	LS-300-C	28277
	LS-315-C	28278
	LS-325-C	28279
LINK SEAL®	LS-400-C	28281
	LS-425-C	28283
	LS-475-C	28285
	LS-500-C	28287
	LS-525-C	28289
	LS-575-C	28290
	LS-600-C	28291

Pipe A-45

Wall Sleeves

CS MODEL 06 CAST OR STEEL CORE BIT DRILLED HOLE PLASTIC **SLEEVE** ACTUAL **SLEEVE** NOM. OUTSIDE PIPE DIAMETER (O.D)STEEL LINK-LINK-PLASTIC LINKS PER SEAL LINKS LINKS **SLEEVE** SEAL SEAL (inches) HOLE SEAL SLEEVE PER PER SIZE NO.** SIZE SIZE I.D. MODEL SEAL SEAL NO.** (inches) NO.** LS-300-*** 2" CS-4-* WS-3¹/2-22-S-* LS-200-*** 8 LS-300-*** 2.50 4.00 6 6 $2^{1}/4''$ 2.75 CS-4-* LS-275-*** 10 WS-4-23-S-* LS-200-*** 9 4.00 LS-200-*** 9 LS-315-*** 3" CS-6-* LS-340-*** 10 WS-6-18-S-* LS-340-*** 10 6.00 10 3.96 4" LS-475-*** LS-475-*** LS-410-*** 4.80 CS-8-* 8 WS-8-18-S-* 8 8.00 7 6" CS-10-* LS-475-*** WS-10-36-S-* LS-410-*** LS-410-*** 6.90 10 10 10.00 10 WS-12-37-S-* 8" 9.05 CS-12-* LS-400-*** 9 LS-400-*** 9 12.00 LS-400-*** 9 10" 11.10 CS-14-* LS-410-*** 15 WS-14-37-S-* LS-340-*** 24 14.00 LS-410-*** 15 12" 13.20 CS-18-* LS-575-*** 15 WS-16-37-S-* LS-340-*** 28 16.00 LS-400-*** 12 14 15.30 CS-20-* LS-575-*** 17 WS-20-37-S-* LS-575-*** 17 18.00 LS-360-*** 24 CS-22-* LS-360-*** WS-22-37-S-* LS-575-*** 19 20.00 LS-360-*** 16 17.40 28 27 19.50 CS-24-* LS-410-*** WS-24-37-S* LS-575-*** 21 22.00 LS-360-*** 18 25 30 20 21.60 CS-25-* LS-400-*** 20 WS-26-37-S-* LS-575-*** 23 26.00 LS-525-*** 19 24 25.80 CC-30-** LS-400-*** 23 WS-30-37-S-* LS-400-*** 23 28.00 LS-425-*** 23 CC-38-** LS-500-*** WS-36-37-S-* LS-400-*** LS-575-*** 32.00 36.00 30 28 29 34 CC-44-** LS-500-*** WS-44¹/2-37-S-* LS-500-*** LS-500-*** 36 38.30 33 33 43.00 33 CC-50-** LS-525-*** 42 44.50 LS-500-*** WS-50-37-S-* LS-500-*** 38 38 49.00 38 LS-500-*** LS-500-*** 48 50.80 CC-56-** LS-500-*** 43 WS-57-37-S-* 43 56.00 43 *=Specify sleeve length in inches, **=See Cell-Cast® catalog, ***=Specify LS Model C, S-316, L...etc when ordering (Example LS-475-C-17)

Link-Seal[®] For Ductile Iron Pipe (AWWA-Type)

NOTE: WS rolled sleeves (6" & 8") =.1875" wall thickness; (10") = .25" wall thickness.

NOTE: See next page for Steel, Plastic and Copper Link-Seal sizes. Link-Seal will work with most other types of pipe and will accommodate odd opening sizes. Please call your local Team EJP sales office for assistance.

Complete Installation in less than 5 minutes

1 Link-Seal is shipped as a belt of interconnected rubber links.

3 Slide the assembly into the space between the pipe and wall.

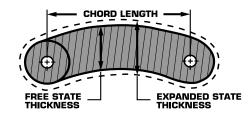
2 Wrap the belt around the pipe. Then connect the first and last links.

4 When the bolts are tightened, Link Seal expands to create a gas and watertight seal.

Pipe A-46

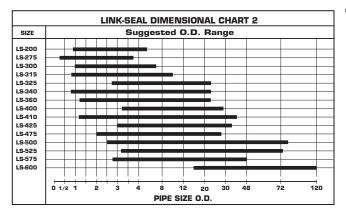
Wall Sleeves

Link-Seal[®] For Steel and Plastic Pipe With Same Outside Diameter


NOM. PIPE	ACTUAL OUTSIDE DIAMETER	CS MODEI NON-META SLEEVE		Jun	STEEL SLEEVE		CAST OR OR CORE BIT DRILLED HOLE				
SIZE	(O.D)	SLEEVE MODEL	LINK- SEAL SIZE	LINKS PER SEAL	STEEL SLEEVE	LINK- SEAL SIZE	LINKS PER SEAL	HOLE I.D.	LINK- SEAL SIZE	LINKS PER SEAL	
1/2"	0.840"	CS-3-*	LS-315-***	4	WS-2-15-S*	LS-275-***	5	2.000	LS-200-***	4	
3/4"	1.050"	CS-3-*	LS-315-***	4	WS-2 ¹ / ₂ -20-S-*	LS-275-***	6	3.000	LS-315-***	4	
1"	1.315"	CS-3-*	LS-300-***	4	WS-2 ¹ / ₂ -20-S-*	LS-200-***	5	3.000	LS-300-***	4	
11/4"	1.660"	CS-3-*	LS-275-***	7	WS-3-21-S-*	LS-275-***	8	3.000	LS-275-***	8	
11/2"	1.900"	CS-3½-*	LS-300-***	5	WS-3-21-S-*	LS-200-***	7	4.000	LS-315-***	6	
2"	2.375"	CS-4-*	LS-300-***	6	WS-3 ¹ / ₂ -22-S-*	LS-200-***	8	4.000	LS-300-***	6	
21/2"	2.875"	CS-4-*	LS-200-***	9	WS-4-23-S-*	LS-200-***	9	4.000	LS-200-***	9	
3"	3.500"	CS-5-*	LS-315-***	9	WS-6-28-S-*	LS-360-***	7	5.000	LS-300-***	8	
31/2"	4.000"	CS-6-*	LS-340-***	10	WS-6-18-S-*	LS-340-***	10	6.000	LS-315-***	10	
4"	4.500"	CS-6-*	LS-300-***	10	WS-6-18-S-*	LS-315-***	11	6.000	LS-300-***	10	
5"	5.563"	CS-8-*	LS-360-***	10	WS-8-18-S*	LS-360-***	10	8.000	LS-340-***	13	
6"	6.625"	CS-10-*	LS-475-***	10	WS-8-18-S-*	LS-315-***	15	10.000	LS-475-***	10	
8"	8.625"	CS-12-*	LS-475-***	12	WS-10-25-S-*	LS-315-***	20	12.000	LS-475-***	12	
10"	10.750"	CS-14-*	LS-410-***	15	WS-14-37-S-*	LS-360-***	17	14.000	LS-475-***	14	
12"	12.750"	CS-18-*	LS-475-***	17	WS-16-37-S-*	LS-360-***	20	16.000	LS-475-***	17	
14"	14.000"	CS-20-*	LS-340-***	30	WS-18-37-S-*	LS-475-***	18	18.000	LS-575-***	16	
16"	16.000"	CS-22-*	LS-410-***	21	WS-20-37-S-*	LS-475-***	21	20.000	LS-575-***	18	
18"	18.000"	CS-24-*	LS-340-***	38	WS-22-37-S*	LS-475-***	23	22.000	LS-575-***	20	
20"	20.000"	CS-25-*	LS-500-***	18	WS-24-37-S-*	LS-475-***	25	24.000	LS-575-***	22	
22"	22.000"	CS-25-*	LS-360-***	34	WS-26-37-S-*	LS-475-***	28	26.000	LS-575-***	24	
24"	24.000"	CC-30-**	LS-500-***	21	WS-28-37-S-*	LS-475-***	30	28.000	LS-575-***	26	
					ecify LS Model (.25" wall thickne		tc when ord	lering (Exa	mple LS-475-0	C-17)	

Link-Seal[®] For Copper Tubing

NOM. PIPE	ACTUAL OUTSIDE DIAMETER	CS MODEL NON-META SLEEVE	<u> </u>	JUD	STEEL SLEEVE		CAST OR CORE BIT DRILLED HOLE					
SIZE	(O.D)	SLEEVE MODEL	LINK- SEAL SIZE	LINKS PER SEAL	STEEL SLEEVE	LINK- SEAL SIZE	LINKS PER SEAL	HOLE I.D.	LINK- SEAL SIZE	LINKS PER SEAL		
1/2"	.625"	CS-2-*	LS-275-***	4	WS-2-15-S*	LS-275-***	5	2.000	LS-275-***	4		
3/4"	.875"	CS-3-*	LS-315-***	4	WS-2 ¹ / ₂ -20-S-*	LS-275-***	6	2.000	LS-200-***	4		
1"	1.13"	CS-3-*	LS-315-***	4	WS-2 ¹ / ₂ -20-S-*	LS-275-***	6	3.000	LS-315-***	4		
11/4"	1.38"	CS-3-*	LS-275-***	8	WS-2 ¹ / ₂ -20-S-*	LS-200-***	5	3.000	LS-300-***	4		
11/2"	1.63"	CS-3-*	LS-275-***	8	WS-3-21-S-*	LS-275-***	8	3.000	LS-275-***	8		
2"	2.13 "	CS-4-*	LS-315-***	6	WS-3 ¹ /2-22-S-*	LS-275-***	10	4.000	LS-315-***	6		
	*=Specify sleeve length in inches **=See Cell-Cast [®] catalog ***=Specify LS Model C, S-316, Letc when ordering (Example LS-475-C-17) NOTE: WS rolled sleeves (6" & 8") =.1875" wall thickness; (10") = .25" wall thickness.											


Wall Sleeves

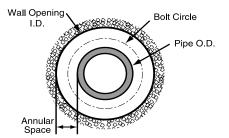
Link-Seal Dimensional Chart 1

LINK- SEAL SIZE	FREE STATE THICKNESS*	EXPANDED STATE THICKNESS	CHORD LENGTH
LS-200	0.50"	0.64"	1.120"
LS-275	0.62"	0.80"	0.906"
LS-300	0.71"	0.92"	1.510"
LS-315	0.82"	1.10"	1.469"
LS-325	0.94"	1.14"	3.110"
LS-340	1.05"	1.33"	1.575"
LS-360	1.29"	1.65"	2.106"
LS-400	1.43"	1.87"	3.622"
LS-410	1.48"	1.91"	2.598"
LS-425	1.13"	1.43"	3.622"
LS-475	1.62"	2.08"	2.630"
LS-500	2.37"	2.81"	3.860"
LS-525	2.18"	2.58"	3.860"
LS-575	1.88"	2.35"	3.100"
LS-600	3.20"	4.00"	6.000"

*= Free State Thickness includes an insertion tolerance and therefore, differes from the **actual thickness** as listed in Link-Seal modular seal dimensional data.

Calculation Method For Non-Standard Diameters

If your pipe size does not appear on the two preceding pages call your local Team EJP Sales Office or use this method to select the proper Link-Seal.


First, calculate the Annular Space in order to select your Link-Seal size from the chart on this page. Then determine the number of links required to go around the pipe. Here's how:

- **Step A:** The Annular Space is half the difference between your pipe size and the wall opening diameter. Use this formula:
- Annular Space = $\frac{\text{Wall Opening} \text{Pipe Diameter}}{2}$
- **Step B:** Now go to Link-Seal Dimensional Chart #1. Select the size closest to the Annular Space just calculated. You have selected the correct size Link-Seal if ... the Free State Thickness is less than the Annular Space...and the Expanded State Thickness is greater than the Annular Space.
- **Step C:** Next calculate how many links are required to fit around the pipe and seal the Annual Space. This is a 3-part calculation. First determine the Bolt Circle for your Link-Seal assembly. This is simply the mid-point of the Annular Space:
- Bolt Circle = $\frac{\text{Wall Opening + Pipe Diameter}}{2}$
- **Step D:** Second, determine the number of links needed for your assembly. To do this, find the Chord Length of your Link-Seal size from the Link-Seal Dimensional Chart 1. Then multiply the Bolt Circle by 3.14 and divide by the Chord Length.

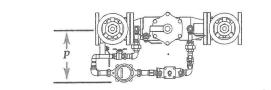
Links Per Seal = $\frac{Bolt Circle x 3.14}{Chord Length}$

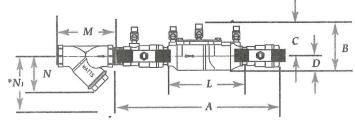
Finally the results must be rounded down to the next whole number. This completes your calculation.

IMPORTANT: If the Step D calculation results in 10 or more links, it is accurate. If it indicates fewer than 10 links, please call your local Team EJP Sales Office for further assistance.

Series 007 1/2" - 2", 007DCDA 2"

Double check valve assemblies


- Backflow preventers designed to protect potable water supplies in accordance with national plumbing codes for non-health hazard cross connections and continuous pressure applications.
- Provides protection against back siphonage and backpressure backflow.


Specifications

- All sizes supplied with resilient seated shutoffs
- Sizes: ¹/₂" 1" (15-25 mm) have tee handle shutoffs. 1¹/₄" - 2" (32-50 mm) have lever handle shutoffs.
- For supply pressures up to 175 psi (12.1 bars).
- Water temperature: sizes ¹/₂" 2" (13-50 mm) from 33°F to 180°F (.55°C to 82°C).

Flow Charts see page 44, 45.

Dimensions/Wgts.

Features

- Line sized construction for reduced fouling
- Replaceable seats and seat discs
- No screws in the waterway for reliable operation
- Captured springs for safety
- Top entry, single cover for access ease
- Top mounted test cocks to simplify testing For additional information, request ES-007. For WattsBox Enclosures, request ES-WB and ES-WB-T.

Options add Suffix:

- PC with internal polymer coating
- S with bronze strainer
- LF without shutoff valves
- LH with locking handle ball valves (open position)
- SH with stainless steel ball valve handles
- **U** union connections
- **HC** with fire hydrant connections (female hose swivel x male NST)

add Prefix:

SS - with 316 stainless steel backflow preventer and ball valve shutoffs.

STRAINER DIMENSIONS

Size (DN)			M		N	*	N1
in.	mm	in.	mm	in.	mm	in.	mm
1/2	15	23/4	70	21/4	57	10	254
3/4	20	33/16	81	23/4	70	10	254
1	25	33/4	95	3	76	12	305
11/4	32	47/16	113	31/2	89	20	508
11/2	40	47/8	124	4	102	223/4	578
2 •	50	55/16	151	5	127	28	711

*Dimensions required for screen removal.

	Order	Size	(DN)	A			3	C	;	0)	l			Р	Wei	ght
Model	No§	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm		-	lbs.	kg.
007QT	0062131	1/2	15	10	250	31/8	79	23/8	60	3/4	19	5	127	-		41/2	2.0
007M3QT	0062020	3/4	20	111/8	282	4	100	31/8	79	7/8	22	5	127		-	5	2.3
007M1QT	0062306	1	25	131/4	337	51/8	130	37/8	98	11/4	32	63/16	157	-		12	5.4
007M2QT	0062681	11/4	32	163/8	416	5	127	31/2	89	11/2	38	63/16	157	-		23	10.4
007M2QT	0062436	11/2	40	163/4	425	5	127	31/2	89	11/2	38	71/2	191	-	-	27	12.2
007M1QT	0062427	2	50	191/2	495	61/4	159	33/4	95	21/2	64	71/2	191	-		253/4	11.7
007QT-S	0062132	1/2	15	10	250	6	150	23/8	60	3/4	19	91/2	241			51/2	2.5
007M3QT-S	0062021	3/4	20	111/8	282	61/8	156	31/8	79	7/8	22	91/2	241	-		63/4	3.1
007M1QT-S	0062308	1	25	131/4	337	73/4	197	37/8	98	11/4	32	93/4	248	-	-	14	6.5
007M2QT-S	0062450	11/4	32	163/8	416	7	178	31/2	89	11/2	38	93/4	248	-	-	26	11.7
007M2QT-S	0062616	11/2	40	163/4	425	7	178	31/2	89	11/2	38	133/8	340	-	-	351/2	16.0
007M1QT-S	0062428	2	50	191/2	495	83/4	222	33/4	95	21/2	64	133/8	340	-		331/2	15.2
*007DCDAOSY‡	0062665	2	50	351/8	892	11	279	121/4	311	21/4	57			121/4	311	97	44

§- Contact your local Watts Agent or call Customer Service (978) 689-6066 for other models and order numbers or refer to PL-WR. For Union Models refer to ES-007. ‡ - models come with CFM/GPM meters. For GPM codes see price list.

*B dimension is from the lowest part of the valve (the unmachined relief port) to the highest part of the gate/ball valve shutoff.

watts regulator • backflow products division

ITEM#142

TREMDrain Series Drainage Mats Multi-Composite Drainage and Protection Boards

Product Description

The TREMDrain[®] Series of drainage mats consists of a family of drainage mats with a variety of combinations of filter fabrics, drainage cores and protective polymeric film. The fabric allows water to pass into the drainage core while keeping soil particles out. The drainage core acts as a protection course and creates a high capacity drainage plane. The addition of polymeric film prevents the drainage core from pressing into the waterproofing membrane. TREMDrain drainage mats are used in conjunction with TREMproof[®] and Paraseal[®] waterproofing membranes in both vertical and horizontal applications.

TREMDrain is a two-layer drainage mat consisting of a polystyrene core and nonwoven, needle-punched, polypropylene fabric.

TREMDrain 1000 consists of a polystyrene core and nonwoven, needle-punched, polypropylene fabric (PF). Available with or without the polymeric film attached to the back of the drainage core, it offers greater compressive strength than TREMDrain.

TREMDrain 2000 is a three-layer drainage mat including a woven polypropylene fabric, polystyrene core and polymeric film.

TREMDrain S has the highest compressive strength available within the TREMDrain series and consists of a nonwoven, needle-punched, polypropylene fabric, polystyrene core and polymeric film backing.

TREMDrain GS drainage mats consist of a perforated polystyrene core with fabrics attached to both sides. Installed with the dimples down, the core also functions as a water retention layer. Water retention of TREMDrain GS 1/2 in. core is 0.06 gal/sq ft and of TREMDrain GS 1 in. core is 0.11 gal/ sq ft. When the dimples fill with water, excess water escapes through the perforations in the core and drains out through the dimple layer below. The spun-bound fabric on the dimple side of the core acts as a cushion to protect the membrane below. The fabric on the flat side of the mat is typically a spunbound polypropylene fabric, but is also available as a copper hydroxide-treated non-woven, needlepunched fabric for systems with aggressive root structures.

TREMDrain 3000 is a two-part prefabricated drainage material and protection board consisting of a formed polystyrene core covered on one side with a woven polypropylene filter fabric. This fabric allows water to pass into the drainage core while restricting the movement of soil particles. The plastic core provides compressive strength and moderate flow capacity.

TREMDrain Total Drain is a two-layer drainage mat with a unique polystyrene core that consists of a high-profile drainage section for water collection and flow around the structure and a transition section to connect to other TREMDrain series drainage mats. TREMDrain Total Drain also includes a nonwoven polypropylene filter fabric.

Basic Uses

The TREMDrain Series of mats are used with TREMproof and Paraseal waterproofing membranes serving both as a protection course and replacement for traditional pipe and stone drainage systems.

Features and Benefits

TREMDrain Series drainage mats are available in various combinations of fabrics and compressive strengths to provide the optimal level of performance for a range of applications. TREMDrain, TREMDrain 1000 and TREMDrain S feature a nonwoven, needle-punched fabric that will allow water to pass through while filtering out soil particles. TREMDrain 2000 features a woven fabric, which has greater puncture resistance compared to the spun-bound fabric, making it ideal for horizontal applications where concrete will be poured on top of the drainage mat. TREMDrain 3000 is designed for horizontal applications requiring moderate flow capacity, high compressive strength and the strength and filtration properties of a woven geotextile.

Limitations

• Not for use beneath sand-set vehicular pavers.

 When installing TREMDrain GS, the type of plants and/or vegetation, soil type, and other related issues should be reviewed and specified by a regional horticulturist for accurate selection of vegetation for your specific region.

Installation

Refer to TREMDrain Series Application Instructions for specific application details. The techniques involved may require modification to adjust to job-site conditions. Consult your local Tremco Sales Representative for specific design requirements.

Availability

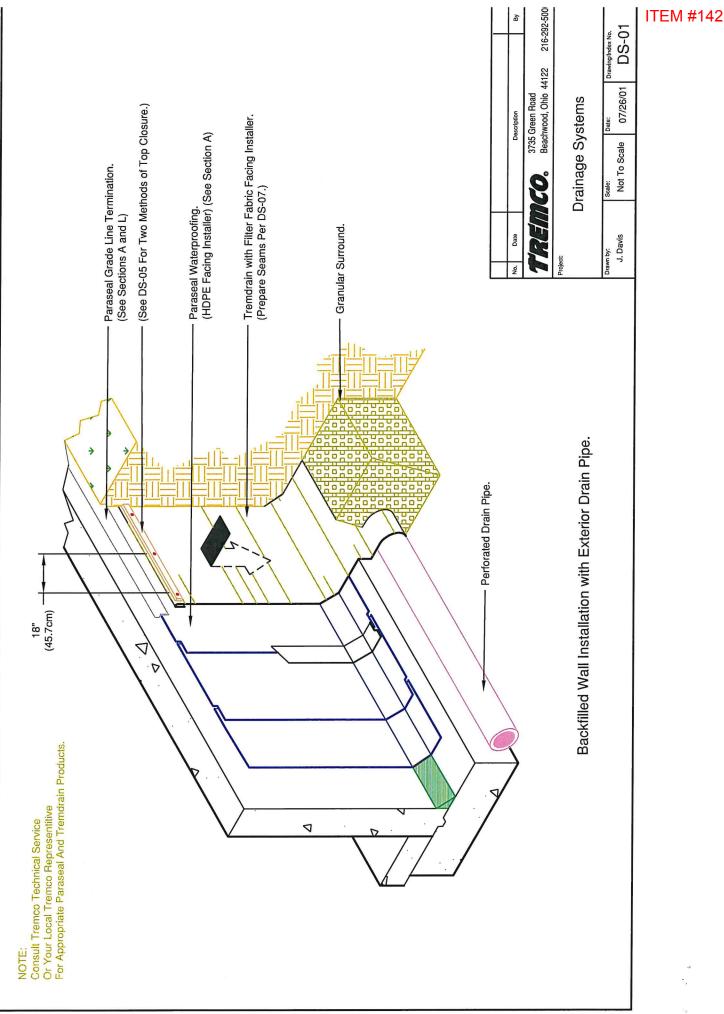
Immediately available from your local Tremco Sales Representative, Tremco Distributor or Tremco Warehouse.

Warranty

Tremco warrants its Products to be free of defects in materials, but makes no warranty as to appearance or color. Since methods of application and on-site conditions are beyond our control and can affect performance, Tremco makes no other warranty, expressed or implied including warranties of MERCHANTABILITY and FITNESS FOR A PARTICULAR PURPOSE, with respect to Tremco Products. Tremco's sole obligation shall be, at its option, to replace or refund the purchase of the quantity of Tremco Products proven to be defective and Tremco shall not be liable for any loss or damage.

Please refer to our website at www.tremcosealants.com for the most up-to-date Product Data Sheets.

	-	TYPICA	L PHYS	SICAL	PROPE	RTIES		
Physical Property	ASTM Test Method	TREMDrain	TREMDrain 1000/1000 PF	TREMDrain 2000	TREMDrain S	TREMDrain GS (1/2 in., 1 in)	TREMDrain 3000	TREMDrain TotalDrain
Typical Applications		Backfilled Wall, Blindside Wall	Backfilled Wall, Under Slab	Split Slab, Planters	Under Slab, Split Slab	Planters	Split Slab, Planters	Backfilled Walls, Blindside Walls
Flow Capacity per unit width	D4716	9 gpm/ft 112 lpm/m	18 gpm/ft 224 lpm/m	18 gpm/ft 224 lpm/m	9 gpm/ft 112 lpm/m	18\80 gpm/ft 224\994 lpm/m	13 gpm/ft 161 lpm/m	Transition: 18 gpm/ft 224 lpm/m High Profile: 80 gpm/ft 994 lpm/m
Roll Length		50 ft 15.8 m	50 ft 15.8 m	50 ft 15.8 m	50 ft 15.8 m	50 ft 15.8 m	50 ft 15.8 m	50 ft 15.8 m
Roll Width		4 ft 1.22 m	4 ft 1.22 m	4 ft 1.22 m	4 ft 1.22 m	4\3 ft 1.22\0.91 m	4 ft 1.22 m	2 ft 0.61 m
		28 lb 12.5 kg	38 lb 17 kg	46 lb 20 kg	30 lb 13.5 kg	40\44 lb 18\20 kg	42 lb 19 kg	30 lb 13.5 kg
Fabric								
Material		Nonwoven Needle-punched Polypropylene	Nonwoven Needle-punched Polypropylene	Woven Polypropylene	Nonwoven Needle-punched Polypropylene	Spun-bound Polypropylene	Woven Polypropylene	Nonwoven Needle-punched Polypropylene
Weight	D3776	3.5 oz/yd² 119 gm/m²	3.5 oz/yd² 119 gm/m²	6 oz/yd² 200 gm/m²	3.5 oz/yd² 119 gm/m²	4 oz/yd² 136 gm/m²	6 oz/yd² 200 gm/m²	4 oz/yd² 136 gm/m²
Grab Tensile Strength	D4632	100 lb 445 N	100 lb 445 N	365 x 200 lb 1620 x 890 N	100 lb 445 N	145 lb 645 N	410 x 220 lb 1824 x 979 N	115 lb 512 N
Puncture Strength	D4833	65 lb 289 N	65 lb 289 N	105 lb 470 N	65 lb 289 N	50 lb 222 N	105 lb 467 N	70 lb 310 N
Trapezoidal Tear	D4533	50 lb 220 N	50 lb 220 N	115 x 75 lb 510 x 330 N	50 lb 220 N	70 lb 310 N	115 x 75 lb 510 x 330 N	60 lb 260 N
Mullen Burst Strength	D3786	225 psi 1,554 kPa	225 psi 1,554 kPa	480 psi 3309 kPa	225 psi 1,554 kPa	150 psi 1,034 kPa	480 psi 3,309 kPa	250 psi 1,724 kPa
Grab Elongation	D4632	65%	65%	15%	65%	60%	15%	70%
AOS	D4751	70 sieve 210 micron	70 sieve 210 micron	40 sieve 380 micron	70 sieve 210 micron	80 sieve 180 micron	45 sieve 355 micron	70 sieve 210 micron
Permittivity	D4491	2.6 sec -1	2.6 sec -1	1.36 sec -1	2.6 sec -1	1.0 sec -1	1.36 sec -1	2.2 sec ⁻¹
Permeability	D4491	0.3 cm/sec	0.3 cm/sec	0.92 cm/sec	0.3 cm/sec	0.03 cm/sec	0.92 cm/sec	
Flow Rate	D4491	165 gpm/ft ² 6,724 lpm/m ²	165 gpm/ft ² 6,724 lpm/m ²	100 gpm/ft ² 4074 lpm/m ²	165 gpm/ft ² 6,724 lpm/m ²	80 gpm/ft ² 3,260 lpm/m ²	160 gpm/ft ² 6,520 lpm/m ²	150 gpm/ft ² 6,113 lpm/m ²
						Copper Hydroxide Treated Nonwoven, Needle-punched Polypropylene		
Root Barrier Fabric		None	None	None	None	Available	None	None
Core								
Material		Polystyrene	Polystyrene	Polystyrene	Polystyrene	Polystyrene	Polystyrene	Polystyrene
Thickness		1/4 in. 6.35mm	7/16 in. 11mm	7/16 in. 11mm	1/4 in. 6.35mm	1/2 in., 1 in. 12mm, 25mm	1/4 in. 6.35mm	7/16 in., 1 in. 11mm, 25mm
Compressive Strength	D1621	10,800 lb/ft ² 527 kN/m ²	15,000 lb/ft² 732 kN/m²	21,000 lb/ft ² 1025 kN/m ²	30,000 lb/ft ² 1,440 kN/m ²	15,000 lb/ft ² , 9,000 lb/ft ² 732 kN/m ² , 431 kN/m ²	33,000 lb/ft ² 1,650 kN/m ²	9,000 lb/ft² 431 kN/m²



Tremco Commercial Sealants & Waterproofing

3735 Green Road, Beachwood, OH 44122 // Phone: 216.292.5000 // 800.321.7906 220 Wicksteed Avenue, Toronto, ON M4H 1G7 // Phone: 416.421.3300 // 800.363.3213 1451 Jacobson Avenue, Ashland OH 44805 // Phone: 419.289.2050 // 800.321.6357

www.tremcosealants.com

